MODEL AEROMAUTICS MADE PAINLESS

BY
R.J.HOFFMAN

MODEL
 AEROMAUTICS MADE PAINLESS

BY
R.J.HOFFMAN

1955

Pame ftaffomen
1884-1956

FORENORD.

The purpose of this booklet is to appeal to a wider circle of readers to use the contents and take further steps in advancing model aeronautics to a higher level. The collection of references and investigations is the result of fifty years of experience in engineering, which includes designing of airplanes from 20 to $1200 \mathrm{~h} . \mathrm{p}$. since 1909 and scientific testing of models since 1912.

The mathematical aspect of model engineering is not very promising because of the great variations in basic designs. In spite of the lack of systematic tests with molels an attempt has been made to use aerodynamics for large airplanes and low-velocity wind-tunnel reports in predicting the performances and the stability of models, many of them contradictory.

The relatively large forces of torque, power, gyroscopic moments of high speed propellers not present in large airplanes makes model aeronautics a new field of engineering. Attention is called to the nrohlem of weight distribution, to the relative position of the zero-lift lines of airfoils and the distance of the thrustline to the center of gravity.

Thanks to all model builders who supplied flying characteristics of their models, that were incentive of many theoretical investigations appearing in this booklet.

If following, poorly arranged pages contribute only in a small share to greater interest in model aeronautics the labor involved was well rewarded.

This Edition was prepared from author's original paste-up copy.

MODEL AERONAUTIC PUBLICATIONS Box 135 Northridge Calif. 19324

THR AIR- Moving an object through the air or any other fluid requires a force to overcome the resistance called the irag. The drag is influenced by the size, shape, velocity, surface texture of the body and the condition of the air. The drag is equal to the velocity squared, times half of the standard density, times the area and times the drag coefficient. The drag coefficient of a flat plate vertical to the air stream is 1.28 . Other coefficients are given on page f. The area is usually taken at the maximum cross sections of the bodies.

Inclining a flat plate in an air stream the air is deflected downard. The forming of a vacum on the upper surface is out of question and air is transfered to the upper surface which may flow past the lower surface. This transfer is the upwash. The upwash can be analyzed as a combination of a straight flow and a circular flow about the airfoil. This circulation is accepted as the cause of lift. The upwash is not sufficient to meet the air flowing past the lower surface at the trailing edge and turbulent vortices will form in the air stream as it leaves the plate or the airfoil. The air leaving at an angle is the downwash. The turbulent wake behind the airfoil is the Karma vortex street.

The drag of a flat body can be reduced by stremlining, shaping it to a cross sectional outline similar to the one of afish (trout). Such symmetrical sections are basic for designing sections for ings by bending, cambering the meanline with its maximum point at the 25 to 60 per cent of the chord and also varying the maximum thickness. The camber of the meanline and the thickness depend on the required performances.

Sections are tested in wind-tunnels at various angles. The resultants are inclined to the air stream, and for simplicity are resolved into two components, one parallel to the air stream, the dras and one vertical to the flow the lift. For use they are reduced to $C D$, the drag coefficient and to CL, the lift coefficient.The angles are measured from any line selecte d by the laboratory. In adition to the coefficients points are given on the base line where the resultants intersect, which are the centers of pressure, c.p. With the angle of attack, the c.p. and the coefficients the resultants can be plotted. The resultant can be resolved into components again at any other point on the resultant. This shows that there is no center of lift or drag even for the reason of simplifying investigation of problems, except if the reference point is at a great distance.

The increase of the CL coefficient with increase of angle for regular airfoils is the same, except the zero-lift line will be at different angle of attack. The change per degree is the slope of lift coefficients, which however depends on the ratio of the span and the average chord, the zspect ratio. Tests on slopes are plottei on a diagram and an empirical equation is formulated which simplifies estimate that includes function of aspect ratio of areas.

The slope of lift coefficients is also the same for symmetrical sections; and call them non-lifting because their zero-lift lines coincide with the chord lines is a misnomer. The location of the zero-lift line for a cambered section is found by equations or by halving the thickness at the 40 per cent chord distance and connecting the point with the trailing edge. The angle to the zero-lift line is the absolute angle of attack, which is always used in stability calculations.

Increasing the angle of attack increases the lift until it reaches a maximum and its coefficient is the CLmax. The CLmax varies with the velocity of the air and with the volocity the angle is increased or decreased, as shown in a diagram. The speed obtained by the CLmax is the stalling or landing speed, which is only a few degrees higher than the angle for the minimum sinking speed and for the minimum power required for horizontal speed. This is the reason to use the CLmax in comparing sections for performances, and especially for durations. Maximum lift coefficients for rectangular and oval wings with various aspect ratios are plotted that shows that an oval wing with an aspect ratio of 1.28 (flying saucer) has the highest CLmax. Up to-date no equation is available for estimating CLmax coefficients.

Stalling does not start at the same angle along the span of a wing. The point, a stall starts depends on the plan view of the wing, if all ribs are of the same design and have the same angle. A few layouts give the places where a stall begins as the anyle of attack is incressed. An elliptical wing is the only design that stalls evenly. It is however desired that the stall should start at the center of the span in order to have lateral stability and to stop spiral diving. To overcome a probable stall at the tip the mean camber of the outer section of the wing is increased or stall strips are added to the center section. Some use washout of the tip section, which however reduces lift, but increases lateral and horizontal stability.
The radius of the leading edge (nose) has a certain influence on the Clmax, shown in a sketch. The larger the radius, the greater the movement of the gtagnation point. This indicates that the effective mean line will increase with the increase of the angle of attack. Stunt models and stunt propellers should have a large nose radius. Speed wings and speed propellers have always pointted leading edges. Some manufacturer even give the size of the radius for their wings to insure performances predicted.

Many devices have been tried to increase the maximum lift of a section. Cambering, using flaps, sucking, blowing, extending the area for gliding or placing rotors in the leading edge. At taching such devices to models may increase the weight but may not lower the sinking speed.

The minimum drag coefficient can be corrected for other speeds than the one given by the report by using the nomogram with the triple scale. Deduct the friction coefficient on the center scale for the R.N. of the report and add the friction coefficient for the product of the chord in inches and the velocity in ft.p.sec. The R.N. Reynolds number is explained in another section.

The combination of all drag forces excepting the one of the wing is the parasite drag and its coefficient the CDpar. The parasite irag is redues to a flat plate area of equivalent resistance and the ratic of the equivalent area and the wing area times 1.28 is used in equations for performance calculations as a constant. This however will not give the correct answer if the investigation involves a great variation in wing areas.

The air flow reaching an airfoil will part at the leading edge, the stagnation point, its upper flow passing close to the surface in a laminar flow. Later it becomes turbulent at the point of transition until it breaks away at the point of separation, leaving eddies in its wake. Airfoils with laminar flow have a low drag at small angles and a low maximum lift; airfoils with turbulent flow have a high drag at low angles and a high maximum lift. Most models perform at large angles, especially when gliding and a turbulent flow would be the solution. Sandpaper located on various places on a thick section gave negative results. Turbulators are suggestet to be carried close to the leading edge. Serrating the leading edge or the trailing edge reduced the drag of wings and propellers. Coincidently the spacing of the serrations are the same as the pins holding the turbulator. No fool proof theory has been afvanced but it seems that a slight helical motion of the air flow delays separation.

Prof.Schmitz suggested for low R.N. up to 20,000 to use sections from 3.4 to 6 per cent thick with a camber of the mean line from 4.5 to 6 per cent and a leading eige radius up to 1 per cent of the chords. His design should automatically give a turbulent flow.

Many theoretical designs of airfoils are available. The best one is the Joukowsky transformation of a circle into an airfoil. The mechanism of the transformation is shown by a graphical construction and by an instrument using the same principle. This transformation does not consider the drie of the airfoil. Others are the Mises and the Frefftz constructions, and many designs developed by the N.A.C.A. Another sections were evolved by Davis from empirical equations of power and wing loadings of airplanes. The simplest and generally used section is the Clark Y with its flat lower surface, which was used to develop one of the N.A.C.A basic section. The thinning is usually done by reducing only the height of the section, instead in reference to the mean line, which would keep the quality of the Clark Y section.

The interference of the fuselage on the coefficionts of the wing at various locations is given by a diagram, which shows that the low wing is the worst location if no changes are made in the design. Saggirg of the wing covering will not effect the efficienoy of the airfoil if the waves are small, smooth and without ridges.

DRAG COEFFICIENTS ~CD
STAMDARD AIR DEHSITY CD $=$ DRAG/.OOII $9 \times V^{2} A$
$=.00238$ A SQ.FT, DFAG LBS, V FEETP.SEC.

PLAIIX 25
BALLOON . 55
AREA $=D I A \times W I D T H$
WHEELS

$\begin{array}{llll}\text { PH } & 5 & 100 \\ C D & 30 & 7 & 1.00\end{array}$ CD 3071.00
SPHEAE ~

MINDPAG OF AIRFOILS
$C D=.25$

EHGIHE EXPOSED AMD SLEADERING GEAA CD=6.3O

ITEG.PARACHUTE $C_{D}=1.40$
WITH 7.5% VEHTONTOP $C_{D}=1.70$

CO. 25

CD. 50

FOPAREA USE CROSSSECTIOH

DRAG IHCREASE

 $02^{\circ} 4^{\circ} 6^{\circ} 8^{\circ} 10^{\circ} 12^{\circ} 14^{\circ} 16^{\circ}$ ANGLE OFAXIS DRAG ALONGAXIS DOES

MOTIMCREASEUPTOIO

PARASITE DRAG COEFFI'T
$C_{D_{P A R}}=1.28 \mathrm{a} / \mathrm{s}$
$S=A R E A$ of WING
$\alpha=E Q U I V A L E N T F L A T$ PLATE AREA OFALL AREAS EXCEPTTHE WING AREA. CDPAR MUST BE ADDEDTO CD OF THE AIRFOILS WHEN COMPARIHG THEM FOR PERFORMAHCE. CO_{0} ISADDEDTOCOPIHESTIMATIHGTHE CLIMBIHGSPEEO
ATSTEEP CLIMB.

7

ALSO CONSTRUCTED
$\angle I F T=A_{\text {REA }} C Q$
$q=V^{2} p / 2$
$\rho=.00238$
ATSEALEVEL

DESIGINIHG AIRFOILS

PLOTTIHG FOR COMIT.
ROUGHIHG LOWER SURFACE IMCREASES CDMIT. BY 20% AMD REDUCES CLMAX BY 5%. ROUGHING WILL REDUCE CLMAX.
UPPER SURFACE BY 30%
BOTHSURFACES BY 43.5% CENTERUPPERSURF. 2% LEADINGEDGE" " 30% TRAILING " 0%

RHFACTOR:CHORDIN. TIMES VEL. FT.PSEC.
 FOR CD MIN WITH CHAMGE OF A.N.

$$
40=2.75
$$

H+工:+ BASIC
DIMESIONS FOR OUTLIHE \% OF T/C

CLARKY

NACA AIRFOIL NUMBERS FOUR-NUMBERSERIES
EXAMPLE:2412
2 MAX. CAMBER \% CHORD $4=40 \%$ CHORO LOCATION
$12=12 \%$ MAX THICKHESS

AIFFOIL SELSCTION. The selection of an airfoil section for models is very involved by the various characteristics demanded by each category of models. The sections should be as thin as possitle for the required performances with the necessary bending and torsional strength. The thickness will vary from 4 to 18 per cent of the chord and the camber of the mean line from zero to 6 per cent.

The control-line speed model requires a section that has a minimum drag at the lift coefficient for top speed. The section can be selected from N.A.C.A. reports because the Reynolds number may be the same as the one for the model. The camber should be 10 times the lift coefficient at top speed, if expressed in per cent of the chord. The wing is tapered, has a 10 per cent thickness at the fuselage and not less than $1 / 8$ in. at the tip.

The control line stunt requires a symmetricsl section with a large nose radius and extended flaps to increase the cLmax. The selection is based on the $1 / 2$ power of the CLmax divided by the $1 / 3$ power of the CDmin or the cube of the CImax divided by the square of the CDmin. The CDmin must include the parasite drag coefficient.

The tow-line glilers require a section that has the lowest sinking speed. Plotting sections $C L$ on a $3 / 2$ power scale and the $C D$ on a straight scale the tangent to the curve gives the angle for the lowest power or for the lowest sinking speed. The tangent drawn from the parasite coefficient indicates that the higher the parasite drag is the greater will be the camber.

Indoor glilers require a section that has a low minimum drag when launched and a high camber when gliding downward. The glijers have usually wings with flexible rear portion to reduce the drag during the high speed launching. Disregarding the analysis on page 65, the selection may be simplified by dividing the slope of the tangent to the vectors by the CDmin. The low parasite drag of balsa gliders will result in a mean line camber of 2 to 2.5 per cent.

The section for free-flight models depends on the reserve power over the required minimum power. Models flying on minimum power have the same selection as the tow-line gliders. Lately many rubber driven models are designed to fly at minimum power. The section thus selected is tope for low sinking speed.

Gas jobs with their super power and short power run sill follow the same selection as the hand launched gliders. The sections will be thicker and the canb \rightarrow larger because the parasite drag is also greater. The problem to be solved become3 mure complicated if no limitation is set for the wing area. The aquation should also include the weight variation with the change of area and aspect ratio.

CLARKY $4 \% ~ 6 \% ~ 8 \% ~ 10 \% ~ 12 \% ~ 15 \% ~$ $\begin{array}{llllllllllllll}\text { CLMAX } & 1.36 & 1.39 & 1.41 & 1.43 & 1.44 & 1.45\end{array}$ CD MIH . 009550096.0097 .0099 . 0103 .011 CL $L^{3} / 2.03 .09 .165 \cdot 252 \cdot 354.465$
 $C_{L}^{3 / 2} .585 \cdot 715 \cdot 851.01 .151 .311 .48$
 STUHT: STREAMLINE AIRFOILS FORINUERTED FLYIMG R.N $400,000 \sim 500.000$ THICK $C_{1} 3 / 2 \quad C_{2} 3 / 2$ MAKE CHORDTO THICK. CLMAX $C_{\text {DII }} \frac{C^{3} / 2}{C D+02} \frac{C^{3 / 2}}{C O+20}$ GETRH. 500,000
 $9 \% \quad .85 .0065 \quad 29.5 \quad 3.70$ ABOUT 650
 18% 1.08. O13 $34.0 \quad 5.25$ LOWEST COMIH. FOA SAMELANO'G SPEED MAX. FOP CLIMAX/C CMIM. BEST FOR OOIS SECTIOH A.T. NOT COMSIDERED.

10° WASHOUT OHTIP CLMAX 20% LOWER. SWEEPBACK

THIFNITG DOWHGOOO THICH AIGFOIL SECTIONS.

TAHGENT LIHE IHDICATES LOWEST SIMHIHG SPEED WITH ADDED DAAG COEFF. OF EXPOSED STHUCTURÉ.

> SELECTIOH FOR GLIDE, MIIPOWER.
 ORD $=$ AREA $/ 5$ PAN

$\mathrm{D}=\mathrm{S}(\mathrm{CH} 1+2 \mathrm{CH} 2) / 3(\mathrm{CH} 1+\mathrm{CH} 2)$

AERODYNAMIC CRNTRR One point on the airfoil that simplifies stability calculations is the aerodynamic center. This is the point about which the moments of the air force resultants up to the stalling angles are the same, and the coefficient Cmac. The Cmac is zerofor symmetrical sections and usually negative for cambered sections. The distance from the leading edge is 24 to 26 per cent of the chord. To find the moment of any resultant about a point usually about the c.g., add to the moment about the a.c. the moment of the parallel force passing through the a.c. The resultants of the airforces or their coefficionts are plotted through the a.c. and the moments are obtained by the shortest distances from the reference point. Moment estimates are simplified for designs with the c.g. locations on the chord line by omission of the CD coefficients. This simplified method is used in some textbooks with the c.g. located well below the chord line and the moments obtaind are often twice of the actual moments. A graphic construction shows how the position of a.c. can be found.

SCALE EFFBCT. The irag coefficient is influenced by the spesd, the length and the air conditions. The factor denoting this relation is the Reynolds number (RN), which for standard air is equal to 6300 times length of the body, times the sneed in ft.p.sec. The Reynolds number is applicable only to geometrical similar bodies or airfoils. The R.N. for model units is equal 780 times the chori in inches, times the velocity in m.p.h. In case the velocity is given in ft.p.sec. the constant is 532 . The sasle effect depenis on the air moving over the boiles, which may be laminar or turbulent. The air flow will stay laminar over molels due to the low R,N,. A few diagrams give the change of coefficients with variation of R, N,

BOUNDARY LAYER. Air moving over a boiy will stick to the surface to a certain thickness and the rest of the air will move unrestrained. This stationary air is the boundary layer. The thinkness of the layer depends on the Reynolds number and on the condition of the boundary layer, if laminar or turbulent. The flow is usually laminar at the start and later becomes turbulent. To keep the flow laminar over an airfoil at low angles the surfaces must be smooth and free from waves. Indoor gliders should be checked with french ourves for irregularities on the wing surfaces.

To prevent transition or separation of the boundary layer many devices were tried. Slots give only limited effect and its exact locstion on model wings cannot be determined. They usually create high drag even at low angles. Sucking and blowing seems to give the most promising device. Suction may be applied to model wings if the engine intake can be connected to the slots located at the 60 per cent distance. The loss of power may be greater than the gin in drag.

SCALE EFFECT (TEYMOLDSNUMEER) R. $N=6380 V \times L-V=F P S, L=F T$ $R N=525 \mathrm{~V} \times \mathrm{CH}-\mathrm{V}=\mathrm{F} . \mathrm{PS} \mathrm{CH}-1 \mathrm{M}$ FOR AIFFOILS:
$C_{D_{\text {FRK }}}=2.66 / \sqrt{R . N}$.
F.N IMDOOA FUBBER 8000 OUTDOOR " 55,000 " GAS 150,000 SPEED LIME COMTROL 35 PROPELLER
$R H=35 R_{1 N_{\pi}}$ CHOR $_{1 H}$ RPM.

BOUMDARY LAYER

THICHNESS

GPAPHIC A.C. COH STRUCTIOH
A.C. LOCATIONMOVESTOWARDS $C_{\text {MAC. }}=M 6+.002$

THE T.E WIHIHCREASEOFR.N. CLARKY $-.07,2409=-045$ A.C. ON SYMMETRICAL 2412-.043, 4409,4412-088 SECTIOMS ARE LOCATED 4409-4412=-.133,6712=-021

$M=F \times D / s T_{1}, M_{A C}=-F D_{1 s}, 2$ $C_{G}-M=M A C+F\left(D_{I S T}+D_{I S T} 2\right)$

$$
=F D r s r_{1}
$$

$$
\begin{aligned}
4409-442=-133,6712 & =0 \\
\text { ALL SYMMETRICAL } & =0
\end{aligned}
$$

CI/A REDUCES WITH TURBULENCY.
C IMAX HOWEVERINCREAS-
ES. POLISHED ORROUGH
SURFACE NO/HFLUENCE OHCLMAX. UPTO R.H. 150,000

RF7 250,000 500,000
THICKNESS OF LAYER: THICKHESS OF LAYER:

$$
\begin{aligned}
\delta= & 5.5 C X / R \cdot H^{1 / 2} \\
& X \text {-DISTAMCE INFT. }
\end{aligned}
$$

Boundary-LAYERCOHTPOL TO PAEVENT SEPARATIOH. BY SUCTION OA BLOWIHG USUALLY AT 60% OF CHOMO
Boundary Layer Comtrol
 TURBULEHT
$\delta=.37 X /$ R.M. 2 T.M. $1 / 67$

Suction By Gas ENGINE INTAKE/?). SLOTS . DIO WIDE SPACEDABOUT. 60 CH .

SMALL AMGLES:LAMINARY HIGHANGLES:HIGHLIFT,
 POINT WITH CL.

13

CENTER OF PRESSURE. The point on the base line through which the air force passes is the center of pressure (c.p.). The base line is an arbitrary line selected by the testing engineer, usually the tangent line to the lower surface of the airfoil. Now all base lines are from the leading edge to the trailing edge. In some reports one may find the base line far below the chord line. The best symmetrical sections have no c.p. movement. The c.p. for cambered sections moves toward the leading edge with increase of the angle of attack. Selecting the reference line below the chord line may reverse the movement of the c.p.. Bending the trailing edge downward moves the c.p. toward the trailing edge and also increases the maximum lift coefficient. This adiltional flexing of the airfoil is used in adjusting models for better atbility. Reversing the c.p. movement can be accomplished by bending the trailing edge upward. This is used in making a cambered airfoil stable without the use of a stabilizer. the angle of deflection is for regular sections about 6 to 7 degrees. The c.p. movement on fuselages are similar to the one on symmetrical airfoils.

ASPECT RATIO. The ratio of the span and the average chord is the aspect ratio (AR). The higher the aspect ratio the smaller the angle of the wing for the same lift. Theoretically the air affected is within the circle drawn through the wing tips. The drag of an airfoil can be divided into the profile irag and the drag required to deflect the air downward. The profile drag is assumed to be constant. The force to deflect the air is the induced drag, its coefficient $C D i$, which is equal to the square of the lift coefficient divided by 3.14 times the AR of the wing. This indicates that by deducting the induced drag coefficient the profile drag coefficient is obtained, which is shown by its application to the CLARK Y section. Most tests on airfoils are made with an aspect ratio of 5 to 6 and to use the results for higher aspect ratio the angle of attack for the corresponding CL must be reduced by the difference of the induced angles estimated by the equation $18.24 \times C I / A . R$. N.A.C.A. simplified this by giving the drag and the angle of attack for the infinite aspect ratio to which the induced drag and the induced angle is added.

Plliptical wings give ideal load distribution for any aspect ratios. Similar load distribution may be obtained by a 50 per cent taper. Endplates increase the effective aspect ratio as given by an equation or determined by the graphical method shown. The proximity of the ground increases the effective aspect ratio and its value can be obtainei by the empirical equation presented. Gliding tests with models should be madeat a certain distance from the ground, and the distance of a glide should never be measured to the point where it touches the ground.

An interesting relation of profile drag and induced drag is developed, which shows that the higher the AR the lower the total drag. The increase of structural weight with increase of A.R. is not included in the investigation.

LEADINGEDGE
FUSELAGE

IMDUCED DRAG COEFF'T
$C_{D I N .}=C L^{2} / \pi A R$
$C D=C D_{\text {PROF }}+C_{D I N D}$. IND. ANGL.E $=\frac{18 \cdot 24 C_{L}}{A \cdot R}$ IND.H.P. $=\frac{274 W_{\text {SPAM }}^{2}}{V_{\text {FT.PSEC }}^{2}}$ $W=O Z, A-S Q I N, S P A N-I N$.

GROUNO EFFECT
$C D=C_{\text {OPROF }}+C_{D \text { ITIO }}$ $C_{D}=\frac{2.36}{\sqrt{R \cdot H}}+\frac{C_{L}{ }^{2}}{\pi A R}$
SUOSTITUTG + DIFF'G $^{\prime}$
AR FOR MIM, CO, $C_{L}=1.0$ $A R=23 W^{1 / 6} \cdot A^{1 / 6}$ FOR OX, SQ.IN.
$A R=6.3 \mathrm{~W}^{1 / 6} . A_{R E A} 1 / 6$
FOR WATEFIELD
FOR IHDOOR MICRO "13 SMALL GAS
FOF HIGH STOEED JOB X C_{L} IMCREASE OF WEIGHT WITHAR NOT CONSIDERED

AREFF $=A R\left(1+.07 \frac{\text { SPAN }}{h}\right)$

IH STEEP CLIMB~60웅
THE IHD.IP for A 5OZ. MODEL/S $/ 10,000 \mathrm{HP}$. MEGLECTEDIHESTIMATES.

EMDPLATEHEIGHT CHORO/2 CLIMCREASES $51 / 2 \%$ EMPLATE HEIGHT=CHORD CLIHCREASES $1 / .5 \%$ adDCDOFPLATES

PROPELLERS. The least understood unit of a model is the propeller. With its gyroscopic forces, high torque, side thrust, slipstream and high static thrust makes design and adjustment a complicated task. The thrust necessary to move a model through the air is obtained by rotatirg one or more inclined blades that accelerate a mass of air through the disc area. Higher efficiency is obtained by imparting a low acceleration to a great mass of air. The power required to rotate the blades is supplied by gas engines or by twisted strands of rubber bands.
This acceleration is used in the momentum theory for estimating the thrust and the required power. This theory, however does not take into consideration the profile drag of the blades. There is no theory which would give a correct answer. The blade element theory, which uses the lift and drag of an airfoil agrees fairly well with tested propellers, if correction factors are used.

Th: angle of the lower flat surface of the blade is used to estimate the nominal or geometric pitch. This distance is equal to the distance a blade will travel in one revolution sliding on its flat surface. The diameter and the nominal pitch are usually marked on propellers. Mutiplying the distance from the axis to the blade section by 6.28 and marking it on a horizontal line with a vertical on one and the bladz angle on the other end, then the intersection of the line on the vertical is the nominal pitch. A sketch shows how to find the angle at any section along the blade if the pitch is given. The pitch measured to the zerothrust line is the aerodynamic pitch.

The angle made by the flying speed, divided by the rev.p.sec. of the propeller and the circumference it traveled will be lower than the pitch angle and is denoted as the advance angle. The advance angle and the pitch angle have a certain relation to the efficiency of the propeller, which is the ratio of the power output and the power input.

In reports the advance angle is simplified by using the advance factor V / nD. The reports give the efficiencies and p/D ratios referred to the advance factor. In case the pitch varies along the blade, the nominal pitch is taken at the $3 / 4$ distance from the axis. Another factor that simplifies selecting propellers is the spegd-power coefficient, the Cs, which takes the speed, the power and the r.p.m. of the drive shaft for designing the propeller. For rubber driven propellers most of the equations for gas props are not directly applicable, because even with a given rubber the torque changes with the number of strands used. Any scientific approach is problematic.

Diagrams show forces on a blade, its efficiency and the maximum efficiency expected with the advance factor. One diagram gives the thrust and torque along the blade; another the relative axial and rotational flow, and two sketches show the direction of the air on the upper and on the lower aurface. The spinner aifed to the propeller should not be greater than 25 per cent of the diameter.

Propellers with equal pitch distribution tested on a spindle lose 6 per cent of their efficiencies when mounted on a fuselage. Propellers with incresing pitch toward the tips lose only 2.5 per cent when tested on a fuselage.

Two nomograms and five diagrams give the diameter for rubber props and the diameter and the p / D ratio for gas propellers. Improving the efficiency of propellers were tried. End-plates to decrease tip losses and angles fastened to the flat surfice to prevent radial flow dil not improve efficienoy. Ducted propellers eive greater thrust at low speeds, but their maximum efficiencies fell off because the drag of the cowling was greater than the gain in thrust. Removing the boundary layer by the centrifugal improved the static thrust slightly. Serrating the leading edge and the trailing edge gives hopes for higher efficiency. The question is always- was the improvement due to the design or the thinning of the blades.

An equation and a chart are given for estimating the approximate static thrust of a propeller. For high p/D ratios the thrust will be lower than for lower p/D ratios, because the blade is above the strlling angle. A diagram is given for zero thrust which will help to layout the thrust curve.

The thrust of a propeller changes its direction in a skid (yaw) opposite to that of the skid, because the advancing blade has a larger angla of attack than the retreating blade. Its effect is asgumed to be that of a plate with a span equil to the diameter and an aspect ratio of 8 . This indicates that a tractor propeller requires an additional stab and fin areas to equalize the effect and that a pusher prop will iil stability or even fly a model without a tail if placed at a sufficient distance.

Ong condition is regrettarle, that propellers are not minufactured with greater change in diameters. The change of a propeller from 8 to 9 inches in diameter increases the power by 60 per cent, and increasing the pitch from 6 to 8 inches increases the power by only 30 per cent. Blade width has an influence on the thrust and r.p.m. at the start, but if correctly designed the efficiency at maximum speed is nearly the same. A diagram shows the difference in performznces of a narrow and a wide blade propeller. The advant ge of a wide blade prop is that its selection is no yery critical. The diameter and the pitch of a very narrow blade must be correct to give top performance.

A one-blader mugt have a counter-weight for balancing the centrifugal force and the one-sided thrust. :o prevent vibrations and friction losses. In case contra or tandem propellers are used, the diameter and the pitch is estimated for half the horse pover or the diameter is estimated for the totil power and then mutiplied by .84 .

The outline of gas propeller bludes is similur to the one shown in the sketcn. Rubber driven propellers use wiler bliles in order to reduce the $r . p . m$. at the start. This may also be effected by designing the blide so it will flex to a higher pitch with the high initial torque. The sirfoil section for eita props is a Clark Y with \neq larger nose radi 18 and the section for a rubber prop has a camber on the under surfice.

The advantages of folding props over stopped or wind-milling props are the lower drag and consequently a lower sinking speed. Folding props for gas engines must take into consideration the high centrifugal force and the bending moment of the thrust. The distance of the pin must be at least four times its diameter, because the shear strength is only $1 / 10$ of the compression strength of the wood used. If the distance is lower metal capping must be provided. Many designs for rubber driven folding props are satisfactory. The problem is always the slope of the hinge axis. To fold a blade to the same level, the axis must be in a 45 degree plane half-way to the fuselage. The slope depends on the angle the blade should rotate. The slope of the hinge axis is given by a diagram and an equation. It may be approximated by taking 70 per cent of the blade angle. The direction of the hinge axis is with the pitch of the propeller. The rubber is kept under tension to preventbunching which may upset stability of the model and af ter the remaining turns cannot keep the model flying on an even level the shaft lug hits the stop and the prop will fold due to the air pressure.

Many propellar designs were tried to reduce the starting burst of rubber motors due to their high initial torque. One was a prop with tmo pitch settings actuated by the air presaure. One used the centrifugal force to increase the diameter and the pitch by the action of a cam and the tension of a sprine. The simplest and may be the best one is to design the blade with its flexural center behind the 30 per cent diagonal axia of the propeller. This will flex the propeller to a higher pitch at the start. The flexural center for microfilm propeller blades is controlled by the size of the leading and trailing edge.

Gas propellers with ajjustible pitch did not become popular because of the initisl cost, the lack of extri blades and the time required to set both blades to the desirel pitch.

Two diagrams give the efficiencies of propellers with various p / D ratios. They indicate that the best propeller for a design will not operate at the highest efficiency of the propeller, except at very high p / D ratios. Another paradox that most "observing" modelers have found to be the fact that the maximum thrust of a propeller in flight is not obtained at the maximum power delivered at a high r.p.m.. The highest effiniency is reached at about 1500 to 2000 r.p.m. below the revolutions for maximum power. For proof see page 60 .
The material used in manuficturing propellers limits the efficiency. Aluminum and dural with thin sections give the highest. Next is the compressed wood and then regular propellers. Metal increases the efficiency by 10 to 12 per cent; metal leading edges by 5 to 7 per cent. Thick blade shanks (airplane props) reduce the efficiency by 15 per cont. The gain however is from 3 to 10 per cent if a spinner covers the poor sections. If the proneller is located too close to the wing or to a relative large fuaelate the effiriancy may fall as much as 20 per cont. The extended crankcas? has added to the efficiency of propellers. Tests also showed that the high r.p.th. of today's ecuines increased the efficiency by reducing the profile drag. The sharp leating edge of the blates, that aive maximum efficiency ia not in favor by modelers, because thay may damase their fingers.

 -GAS PFOPDIA. $5^{\prime \prime} 10^{\prime \prime} 12$ HUB DIA. $5 / 83 / 41 / 8$
WIDTH $1 / 43 / 8 \quad 1 / 2$

$D=1.1 \frac{A^{1 / 9 N} N^{3 / 4}}{W^{1 / 2}}$ HOR RGBER
 MUMBER $1 / 8 \times 1 / 90$

TolayOut Pitchangle ORHOWTO FINDPITCH.

QuATER METALCADPIMG STREMGTH BRASSMAILS FOLDIHGGAS PROP
(
APPARENTANGLEOFATTACK

 $M=1 / 8, A$ SQ.1N W OZ
MIM. $N=1.6 W^{2} / 3 A^{1 / 4}$ No. OFTUPNS $=\frac{70,000 \mathrm{hK}}{N^{3 / 2}}$ $R E V \cdot P S,=\frac{810 W^{3} / 2 / 2}{N^{3 / 2} A^{1 / 2}}$
 DUP.SEC: $=\frac{86 W^{3} A^{1 / 2}}{W^{3 / 2}}$ SPEED $=100 \frac{\mathrm{~W}^{1 / 2}}{\mathrm{~A}^{1 / 2}}$ PITCH $=\frac{2 M^{3 / 2}}{4}$
DIA. $25-.50$ SPAH P/D ~ 1.3 To 2.3
STATIC THRUST $=\frac{D_{1 N}^{4} \times P / D \times(\text { R.PM } / 1000)<}{10,000}$

 PAOP

- 5 KID

TRAILING EDGE IMCREASEDSPEED

20

HowToUse:
CONNECTHMOWN VALUES AS/MDICATED EXAMPLE: BHP_. 30 RPM $=12,000 \quad V=40 \mathrm{MPH}$ $P / D=4$, EFF. $59 \quad D=10^{\prime \prime}$ РІІСН $=.4 \times 10^{\prime \prime}=4^{\prime \prime}$ THRUSTIM AIR $=$ $\eta \frac{B 1 P .550}{1.67 M P H}=\frac{59.3550}{1.67 \times 40}$ $\sim 1.451 \mathrm{~B}=23.2 \mathrm{oz}$.

-NOMOGRAMFORFINDIMG DIA. FOR GAS ENGIME PROPS -

ENGIME MOUNT

FREE-FLIGHT MODELS. Indoor models are for experts. They are not only microfilm covered, but also must use selected, light weight balsa for the frame work. The weight of each part msut be the same on both sides. A scale illustrated on page 77 can be built that may give weights within $1 / 10,000$ of an ounce. A lavout is shown with dimensions of a few structural details. Propellers are microfilm covered, which are 50 per cent lighter than the flimsiest balsa prop. Washers and bearings are amde small for minimum welghts. The strength of indoor models 13 very low, they can hardly carry twice their own weight. The maximum camber for wing section is at 40%, windtunnel tests however show that a 50% distance will improve performances, The wing should be a hizh wing about 40% chord distance above the thr ustline. to reduce the required stab area.

Balsa props are made from extra light balsa, cut and arranged so that the rings are vertical to both of the blade sactions. The hook distance is 15 inches, the motor is a loop of 16 to 18 in . in length and about 50 per cent of the totil weight. The durations of three wing-fuselage combinations as sketched gave very close.

Wicrofilm is made by adiing a few drops of castoroil to nitrate dope and a few drops poured on water of a temperature of 65 deg. The success of a contest for indoor models depends on an auditorium with a 80 to 100 feet ceiling without drop lights and a minimum of super structure. Low ceilings will reduce the duration by damaging the microfilm prop.

A general layout for outdoor models shows that the wing should be made adjustable for c.g. corrections. A cradle is used if possible to insure a fixed position without misalignment for succeeding flights. The area is usually limited and an aspect ratio of 10 to 12 may be used if the modeler can expertly cover a narrow wing with a cambered under surface. Endplates on the tips add only drag and reduce the duration. They will however increase stability. Airfoils for a slow climb should have high cambers and for a fast climb low cambers.

Fuselages may be square, octagon or round. The duration will not vary much if folding props are used. The adjustment with a round fuselage belongs to the expert. A low pylon will simplfy adfustment.

The tail may have endplates if the aspect ratio is 10 w and the plates are large enough to replace the necessary fin area. The section is usually a thinned down Clark Y. The tail setting or the difference of the zero-lift lines depends on the weather conditions; for calm weather smaller setting and the c.g. towards the trailing edge and for turbulent weather a greater setting with the c.g. far forward. Any sotting will be critical for the initial burst, because the rubber torque is often 10 times the one used in level flight.

A gear drive may be advantageous for unlimited rubber by saving weight and friction of a shorter fuselage, which will compensate for the weight of the gears and their frictional power.
R.O.G., rise-off-ground type models while at rest in a normal attitude should have no part other than the take-off gear touch the ground. This requires a three-point landing gear.

23

FREF FLIGHT. Models with commercially produced gas engine were flown since 1912. The gas ensine advanced from the throublesome interim of spark plug ienition to a simpler glow plug and compression ignition. The total weight of a model reduced from 8 pounds to less than 5 ounces. A general design of a gas model is shown with the wins restirg on a low pylon, the engine close to the c.g. and the tail from 25 to 50 per cent of the wing area. The aspect ratio is often as high as 11. If the wing area is restricted the airfoil is a Clark Y and if the area is unlimited the airfoil can be a thinned down Clark Y. The tail is usually on top of the fuselage and the airfoil a 6 to 7 per cent flat bottom section.

The modeler has always been puzzled by the better performances of a B gas over a $1 / 2 A$ gas $j 0 b$, even if everything was in proportion to the diaplacement. A numerical estimate is given for both models. The duration of the B job will be 35%. higher than the one for the $1 / 2 \mathrm{~A}$ job. The $1 / 2 \mathrm{~A}$ job has relatively larger prop, larger fuselage, however a lower slipstream. The worst offender is the stopped propeller on an $1 / 2 \mathrm{~A}$ job. Itprovement may be made on streamlining the engine, and folding the propeller when gliding.

TAIL FIRST (Canard)- Years ago the most popular models for contests were the tail-first twin-propeller pushers. They were flown for distance and the ir adjustment were easy because the torque and the gyroscopic precession were balanced by the counter rotating propellers. In addition pusher propellers are selfstabilizing. The fin area on tail-firsts is replaced by a high dihedral of the tail. The higher duration of tractor models soon replaced tail-first models and from then on contests were run for time instead for fistance.

Wind tunnel tests on canards were made by the Eiffel Laboratory and are shown on page 43. Tha spacirg of the vectors ard their magnitude give an aspect of their restoring power on the longitudinal stability.

The canards have a higher sinking speed than the wing-first models and consequently the canards should give a lower duration than the standard models if the slipstream effeot is not taken into consideration. The tail-first models should have at least a 4 degree difference of the zero-lift lizes. Propeller driven tailfirst motels can be made stable by increasing the tail setting and the fin area. A rough graphic construction for locating the e.s. is illustrated.

24

GASENGIME1912:25 HP. 2400R.P.M. - 18° PRUP
 WEIGHT $2 \angle B S$.

SIMGLE FIM
5\% то 7%
TWIM FIHS ADD 20\%
 EOR
FUSE
 ๗

PLATFORM
4xTHICKOFWINg오
THTUSTLIME 5° DOWH, $2^{\circ}-3^{\circ}$ R L.G. WIRE: $1 / 2 A$ OLO $1 / 16$ F.A.I-GAS./I5.6 oz./CU.IN. MIN. .152 cu.n. $\left(2.5 \mathrm{~cm}^{3}\right.$ MAX -15 SEC. RUM WIMGLOADING 2.72 oz/100 SQIM. MIr. DESIGM: CUM $W^{3 / 2} / A^{1 / 2}$ SIX FLIGHTS ~ 5BEST ONES. $C U, I H=.0523 W^{3 / 2} / A^{1 / 2} \sim$ LIMIT $C=.04$ To.067 FAI $=5$ FLIGHTS @ 2 ATTEMPTS

PAA FREE FLIGHT

$1 / 2 A 040 \mathrm{z}, 1 \mathrm{c} . \mathrm{c}$. IrrOBOz $+10 z{ }^{\circ}+20 z+80 z$. VISIBILITY SLOPE $45^{\circ} 50^{\circ}$

DUMmy Is The UpRIGHT POSITION. EASY REMOVAL THROUGH SIDE OR TPAP DOORS.

CLIPPER CDRGO:
2OSEC. EHGIME RUN MIN. DURATIOH 40 SEC. BESTI/2A - ENGIME. 05 WLIMB,AMO GLIOE BESTII2A ENGIME. O5 WITHOUTPROP ANO WITH FLY. WEIGHT 3OOZ. WE Goz.

SIHALL ANO LARGE

 GASMODELS CLIMB, ANO GLIOE STOPPEDPROP. SAMEPOWERAHD WING LOADIHG. DES/GN-CARGO (BEST) $\begin{array}{cccc}\text { GAS F.F. CLASSIFICATION TOFUSE BY } & \\ 1 / 2 A=.000-050 ~ C U .1 H & \text { SLIPSTREAM } & 20 \% & 40 \% \\ A=.051-.200 \% \prime \prime & \text { CLIMBIHG FT.P.SEC } & 35 & 38\end{array}$ $\begin{array}{lllll}A=.051-.200 " \prime \prime & \text { CLIMBIHG Fr.P.SEC } 35 & 38 \\ B=.201-.300 " " G L I D I M G S P E E D ~ & 17.7 & 17.7\end{array}$ $B=.201-.300 " " G$ GLIDINGSPEED
$C=.301-.650 " " G L D I N G A H G L E L / D$ WEIGHT NOT OUER 7LBS. HOPROP 9.512 .4 STOPPED PROP 6.9 9.9 SIMKIMG SPEED

WIMG	FUSE	TALL
PROFILE	IHOUCED	

DRAG DISTRIBUTION
IH GLIDE THE DRAG OF STOPPED PROPAODED

NO PROP $1.8 \quad 1.43$
STOPPED PAOP $256: 86$ TOTALDURATIOH
w. 15 SEC.RUH 3 m .40 s . w.STOPPEDPROP 4M57s. POWER PLANTHOT STREAMLIMED.
 BETWEEN ZE/GO ANOMAXIMUM LIFTMUSTBE GREATER FOR 7HE TAIL THAN FOR THE WIHG:

FOQSECTIONS 12° TO 3i' TMGI2

WEIGHT DISTR: FRAME 35% WIHG 43% 2PRODS 14%, TAIL 8% ~ ADD: 72% FOR RUB BER
1912 ~TAIL-FIPST SPRUCE + PIME 75 TO 100 SQ.IM. TOTALAITEA.
MAX.DISTANCE 700 FT.

25

RADIO CONTROL, R / C. Radio controlled arodels should go into a tiarn without jerky movements when flying, gliding or diving and return to a straight flight after rudier is neutralized. It should have a 3 to 4 ft .per sec. climb in a straight flight, a slight descend in a circling flight and with full ruder it should dive. The gliding speed should be sufficient to overcome a slight breeze in order to be able to return to the base.

The average design follows a certain relation of the total weight, area ant engine iisplacement, which is given by an equation and two nomagrams. The total flying weight is estimated by taking t wice the combined weights of the radio and power equipments. The resulting structuril veight may give too ridid wings that may snap easily in a glido-landing. The wing section is usually a Clark Y and for the stabilizer a symmetricil 0009 to 0010 section. The c.g. location at the 35 to 40 per cent chord distance slightly above or on the thrustine. To reduce the mass moment of inertia the tail is short coupled and the tail setting has a 8 to 9 de' gree difference of the zero lift lines The till and the wing should have a low aspect ratio. The thrustline is offset to the right by 2 degrees to neutralize the torque effect of the engine. In a bank the resultant airforce should pass close above the c.g., which demands a very deep fuselage with its masses evenly distributed about a line at an upward slope passing through the c.g.

This sloping line will be the rotating axis about which the model will rotate at the instant the rudiar is operated. First it will have a slight skid, the dihedral will take effect banking the model with its th rustline pointing outward before it begins to turn. This outward position of the thrustline prevents the model from taking an initial dive which it will io in case the rotation is about the thrustline. The centroid of the vertical control surface should be below the c.g. with a dorsal fin to have stiability at large angles of attack. The rudier should be of sufficient width to overcome the shift of the resultant, the outward yawing force of the thrust and especially the precession forces of the high speed propeller.
Manufacturers should give the exact position of the c.g., the total weight, the engine and propeller used for the final test. Models built from kits by old-timers dived right to the ground. Other models built from kits kept on flying straight ahead with full rudier. An addition of $1 / 2$ inch to the rudder made it one of the best rudier-only kit.

SNOWBANK THEORY. Very interesting observations may be made by watching nature reduce drag of an obstacle by minimam of work. A snow blizzard will streamline an antique car by oreating an embankment of snow at the front end of the hood and a slight overhang at the top. In the ampty space snow flakes will swirl. This work of nature can be dangerous to airplanes entering a region where a snow atorm may be active and climatic conditions suitabla. In a short tims ice particles will settle on the nose of the wing in a way to reduce the camber of the wing, which will eliminate lift. The cross section will depend on the size of the nose and if the radius is large it will be on two points in the shape of shells with two counter rotating whirls on the inside. Another kind of streamlining may be seen on poles on a flat surface with space left around the pole in the shape of a doughnut. In time all this free space is filled with snow. This action of nature can be applied to model design to reduce drag of exposed engines or balloon tires. It was also used in a suggested design of airfoil sections. A few sketches shows the reduction or the creation of turbulency.

One racing pilot used nature's indication for firing a LAIRD biplane in 1928 by flying in a downpour and watching the collection of water at the places to be streamlined. Other places were pointed out by darkened spots on the covering caused by swirling dust particles.

The profile of airfoil sections can be divided into the form drag ani the friction drag. The reduction of the form dras may be accomplished by making the flow turbulent far enough forward of the body. It may be possible by rouehening of the surface of the body. This increase may be greater than the decrease in the form drag if the form drag is only a small portion of the total drag. This condition takes effect for apheres it high R.W. as shown in two diagrams. It is doubtful that this will occur with model wings of low thickness ratios.
Tests with fluid passing through pipes indicated that if the R.N. is below a minimum turbulence will not start by itself and any turbulence started on the outside will convert to laminar flow again. The question of minimum drag. for laminar or turbilent flow must be answered by systematic tests. Mathematical formulation of turbulent flow is unpromising except by avariging tests of similar designs. MOUNTING HOLES

27

FLYING WINGS- All straight flying wings, planks or all-wings with a straight or cambered mean line will dive. Many arrangements can counteract the diving moments. One is to lower the c.g., which may work in calm weather, but the increase of the drag may be greater for the needed structure than for the tail to make it stable. Another one is to place a large fin or two tip fins of high aspect ratio sbove the c.g. This design will work only for symmetrical section or low camberei airfoils, because the drag moment of the fin or fins is not very great. This may work for $j \ominus t s$ and especially with pusher propellerz Pusher props are stable when operzting and may add to stability in a Blile if correctly folded and located at a certain distance.

The best arrangement is a swe apback of the wings and a gradual washout towari the tip by about 10 degrees. This design cannot be clasgei as a true flying wing becaueg part of the ving is used as a stabilizer. Even the CLmax is reduced. A partial negative dihedral may be the answer.

A rubber iriven model made from a 100 h . p. low aspect ratio flying wing with zero diheiral needed a large dinedral and an increased fin with a large dorsal fin to make it stable. The stability was very good the luration however was low.

There are no information available on successful gas engine driven. straight flying wings without washout.

SNOW BANK THEORY

FLYING WING (TAILLESS)MODELS

MODEL 50% RUDDER / MCREASE $10^{\circ} \mathrm{DIHEORAL}$ REQU'D

No

Vert Stable,but POOR DURATIOM.

1935 By 50%. AIFFOIL SECT: CTP M-G, TIP M-1

29

CONTROL-LINE MODELS- The performances of various line controlled models are judged for speed, high and low speeds, scrobstics, speed with a limited fuel supply, combat and some new ones in the experimental stages.

Modelers shy awny from speed job, because souped-up engines are used. The preparation of such engines involves a great deal of machine work and ruining a few engines. To increase the speed, models are flown now on a single line. The design for speed is for a minimum frontal area, minimum inlet and outlet areas for the cooling air and a direct intake of cool air to the engine. The direction of the exhalst gases and the cooling air should be inline with the path of flight in order to aid the speed of the model. The wing area should be sufficient to give a fair landing speed, about $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The tip of the wing should be not over $1 / 8$ in. and $3 / 4$ taper with 15% thickness ratio at the center. The fuselage shouli be beat to follow the circle. The setting of the zero-lift lines should be about 4 degrees. The camber 10 times the CLif per cent of the chord. In case the connections are made within the wings the speed will increase by about $5 \mathrm{~m} . \mathrm{p} \cdot \mathrm{h}$. The total weight will be about three times the weight of the engine, the c.g. at 20% of the chord. Use maple wood and metal skids. The drag of two lines is 70 per cent of the total drag; 10\% for the wing and 20 per cent for the fuselage. For estimates the drag of the lines is equal to $1 / 4$ of the lines moving with the speed of the model.

The team racers must have a minimum area of 125 sq. in., a fuel tank of one fluid ounce, 1.80 su.in., maximum capacity and a 3.75 by 2 in.minimum fuselage cross section. The contest is for a minimum time of a number of laps on 60 ft . lines. The time for refueling is included. On engine shut-off operated by one of the lines must be installed. Engine displacement is from .15 to . 40 cu.in.

The category of stunt models have the ereatest number of followers because anyone who can hold a handle and follow the model in a circle will be able to enter a contest: The wing section is a 12 to 29 per cont symmetrical airfoil. Lateral balance is corrected by weights for the weight of the control lines. The C.G. location is at the 20 to 22 per cent of the chord. The flaps are usually external, tapered if for the full lemgth of the span. To insure lateral stability flapz are only used for half of the span at the center section, because the flapped wing will stall 2 to 3 degrees ahead of the tips. The tail is at a very short distance and with a zero setting of the zero lift lines.

Combats are arranged to cut off paper strips attached to the model. The wing area is about 80 per cent of the regular stunt models or just plain flying wings. Some use plywood rudder and eadolates sharpered to cut the streamer, if missed by the propeller. Also the center line of the span is moved about 10 per cent toward the inside of the circle.

The CARRIER DECK EVENT MODELS. This contest gives the contestand three points for each mile difference between the high speed and the low speed flying 7 laps for each speed. In addition 100 points for a scale copy and 100 points for a hooked landine on a simulated carrier deck. The total weight of the model will be about 70 times the cu.in. displacement in ounces. The wing will weigh about $5.5 \mathrm{oz} . / 100 \mathrm{sq} . \mathrm{in}$. A. 35 cu .1 n . will do the job.

LINE COMTROLLED MODELS

SPEED

HARDWOOD-PIAHOWIPE

CLASS DISPLT L-WIRE $1 / 2$ A 000-050cu.1H 35FT A .051-.200" " 521/2" B . $201-300$ 60 " C .301-. 650 70
FOPMAX CU.IH IM CLASS $L=90 \mathrm{cu} .1 \mathrm{~N} / 3$
AAEA $=150$ SQ.IN. $/$ cuIN. $V=100 \sqrt[3]{\frac{550 H P \times E F F}{8.3 A C D+.05 L d}}$
$A=S Q \cdot I N, L=F T, d=\frac{1}{1000}$ "In $V=$ FP.S, FOR 2 WIRES IFLIMEIS 35FT ~ GLAPS

$52.5 " \prime$
70
100
10

SPECIFICATIONS 125 SQ.IH MIN. AREA 20GTEST. CIRCLE 65FTRAD. RACE: $21,35,70$ LAPS
Mainfeatupe 5 Mile 140 Laps TANK / Fi.OZ $=1.8 \mathrm{CLIN}=29.5 \mathrm{CC}$.
ST'DO HEIGHT /5FT. 25FT.
APPPOX SPEED wITH
. 29 ENG. 75-90 M.P.H.
MUST Have Emgine Shut-off OR ENGIME COHTROL.
WITE .15-.200 1-.016 2-.010
" 201-. 300 1.016 2.012
11 . 301-.400 $-.0202: 014$

FOR APPROXIMATION:

TIME $\operatorname{ITANK}=22$ TO $40 / \mathrm{cu} .1 \mathrm{~N}$.
LAPS ITANK $=9.5-16 /$ cujri ${ }^{2} / 3$
SPEED=119СU. 1 ת. ${ }^{1 / 3 \mathrm{M} . \mathrm{P} . \mathrm{H} .}$
FROMCONTEST
TotalTime in Sec. =
LAPS ($\left.\frac{2.4}{C U .1 N 1 / 3}+\frac{C U .1 \gamma^{1 / 3}}{9.5} T_{R S}\right)$
TRS $=$ TIME FORRESTAPT IN SEC. 2MIN.MAX.
TAKE-OFFWITH CENTRIFUGAL

30

FOR SPEEDMODELS THE DIM ENSIOHARE REDUCEDIN ORDER TOSAVESPACE AND moresensitive.

STUNT

TAIL 25\% of WIrIG LARGERAD. FLAP
 WIHGSECTION 18%
. 29 то. 35 си. IN.
400 TO 500 SQ. IN.
WEIGHT 25 oz. To 33 oz .
. 60 CU.IF. 625 SQ.IN $W_{T}=50 \mathrm{oz}$.
DESIGN:
$C U .1 H=C \times W_{O Z}^{3 / 2} / A_{5.1 / 2}^{1 / 2}$.

$$
C=033-045
$$

CGAT $20-23$ of AVERAGE CHOAD ELEVATOR 40-50\% of Stab Area.

HALFFLAPS BETTER THEYSTALL2 2° O3 3° AHEAD OF THE WIHGTIPS

~ LATERAL BALANCE COMTROL LIMES LEADWEIGHT
$\sqrt{a-\cdots=-2}$
COMBAT: 6OFT /IHE
2-WIPES. 014, IWIPE. 020 0-49 cu.IN 6-8FT. LEVEL DURATIOH 5MIH.
PULLTEST
2FTSTIIIGG, OFTPAPER CUT-OFF $/ 10-350$ POINIS AIPEA FOR COMBAT 1000 SQ.IM/Cu.IN.

32

SLIPSTREAM- The accelerated air behind the propeller is the slipstream, which increases the drag of parts in its wake. The slipstream is not evenly distributed over the propeller disc area and is not passing directly to the rear. The inclined propeller blades give the slipstrean a slightly helical motion. The fin dus to this spiral movement is often off set to prevent the model from turning to the left. In flight the angle, at a dis tance equals to the diameter of the propeller, is about 1:20. The beneficial effect of the slipstream is used for adjusting the longitudinal stability by increasing the upforce or the downforce of the stabilizer. The upforce is usually used to eliminate the looping tendencies of pylon gas models and a balance is obtained When the thrust times the distance to the c.g. is equal to the adiftional lift times the distance to the tail.

The velocity of the slipetream can be estimated for static or flying propellers with the given equations and nomograms. The slipstream of the flying propeller cannot be higher than the one found for the static propeller. The thrust for estimating the slipstream is obtained by a nomogram given in the propeller section. Usually only a portion of the stab is affected by the slipstream and the estimate of the effect becomes more complicated when the direction of the slipstream changes in a circling flight.

The slipstream has a pulsating flow, which increases with the number of blades. This however also decreases the efficiency of the propeller. This seems to be contradictory to the use of multibladerg on airplanes, which has its answer that the diameter is limited by the Mach number (speed of sound) and the available power must be absorbed by the increase of the tctal blade area.

To eliminate the increase of the drag by the slipstream, pusher propellers are used. They aid stability and may increase the efficiency of the wing if in line with the downwash.

The slipstream will increase the lift of the wing if the propeller is placad ahead of the leading edge and will decrease the lift if placed slightly below the wing. Placing the propeller in front of the wing may delay the stall due to the reduction of the angle of attack by the resultant of the flying speed and the velocity of the slipstream, and consqquently the tips may stall ahead of the center of the wing, reducing the lateral stability.

In a rare case a condition may arise in which the change of the thrustline to the right will turn the model to the left. This is possible if a large flat surface area lies thead of the $c . g$.

FIND TUNNELS. Small wind tunnels are very useful for comparing component parts and for eliminating poor design detilis. They are excellent for educational purposes. Open throat tunnele are better than venturi type ones. A $1 / 4 \mathrm{~h} . \mathrm{p}$. motor driving a 14 inch fan will give an airgpeed over $30 \mathrm{ft} . \mathrm{p} . \mathrm{sec}$., which is sufficient for deaigning light airplanes. All small tunnels are turbulent.

33

LOCATION OF THE CENTBR OF GRAVITY. The attraction of the earth is indicated by the gravitational forces acting on the masses of the model. If any mass is allowed to drop without the drag of the air it will accelerate by about $32.2 \mathrm{f} . \mathrm{p} . \mathrm{sec}$. The resultant of all gravitational forces will pass through the c.e. Balancing the model horizontally the line through the c.g. is easily located. For easy adjustment the c.g. location should be obtained on the sideview by balancing the molel with the wing in a vertical position. This will give the distance of the c.g. to the thrustine and to the baseline of the average chord of the wing. This point shouli be given in all plans of manufactured kits.

The c.g. of a plain glider is located on the air resultant of the wing and the tail that gives the lowest sinking speed. By adding the drag of the fuselage and the rudder the location of the c.g. will not change, the slope of the resultant however will be steeper. This mell defined position of the c.g. does not happen on a pylon job because the resultant will change considerably with the addition of the dras forces of fuselage and landing gear. Therefore the location of the c.g. will depend on the design and on the magnitude of the additional drag of each unit. Years ago when adjustment was not so simple and competition was not so keen corrections were male by wrapping solder wire around landing gears or increase the size of the wheels to eliminate climbing moments.

The drag of the deflected rudder on a radio controlled model affects the longitudinal stability. In case the drag resultant passes below the c.g. the model will dive and if it passes above the c.g. the model will climb; the effect may be harily noticeable.

Flight Patterm For Padio Contol Models
 FOR OFFICIAL RULES WAITE TO ACADEMYOFMOOELAEROHAUTICS

SLIPSTREAM

AXIAL FLOW
 STAB AFFECTED ROTATIONAL FLOW
 4 THIUSTIH OUMCES

VF.PS $=98 \sqrt{\frac{\text { THRUSTOZ }}{\text { DIAIN }}}$
STATIC SLIPSTREAM
VS/V $=-1+\sqrt{I+965 \text { THOZ } / D^{2} V^{2}}$
QSLIPSTEAM IN FLIGHT
 SLIPSTEAM IN FLIGHT
80^{5}
Static slipstream
STATIC SLIPSTREAM
EFFECT OHWIMGS.

ATE SLIPSTPEAM OVERTHE
MODELS. MAY RECOVER SOME ENERGY OF THE WAKEFROM THE WING ANO FUSELAGE. -. SESULTANT

- DelayingStall ByThe Slipstafam- thrust Pulls MODELTOTHE RIGHT SlIPSTREAM ToTHELEFT.

THE SLIPSTREAM IS USED TOGIVEAIRPLAMES A v.т.o.

Location of Centeri of Gravity.

GRAVITATIOMAL FOACE $=$ ACCELERATIOH 32.2 F.P.S. ≈ 32 F.P.S. $=a=g$ DISTANCE $=1 / 2 g$ SEC ${ }^{2}$ SPEED $=V=g$ SEC SPEEDFIPEEDROP $V=\sqrt{2} g h$ ACCELERATION CONSTANT $9-32.2$ USEO IN C.F, GYROMOMENT AND

~RADIO CONTROL~

BIPLANES. The advantages of a biplane is its concentration of areas and masses, which makes it one of the best stunt control line model and also the easiest to adjust. Change of the stagger and the decalage give very versatile wing combinations. Stagger improves stability and if a 4 degree decalage is given to the upper wing the biplane becomes stable by itself, shown in a vector diagram. In case this arrangement is changed by moving the lower wing farther to the reav it converts into the basic combination of a light plane known years ago as the "Flying Flea", with the lower wing used for an elevator control, often With disastrous results. Increasing the distance of the lower wing the biplane ends up as a tandem with reducet efficiency due to the downwash from the rain wing.

TORQUR AND COUNTE? TORQUE- The counter-torque is the reaction of the engine or the motor which drives a propeller or any other unit of propulsion. The counter torque will roll the model to the left if the propeller is a right-hani propeller used as a tractor. The counter torque is usually denoted as the torque of the drive. To overcome the rolling moment an equal moment of opposite sign must be created. One method is to offset the wing to the left and set the rudder to the right. Another arrangement is to bend the boom carrying the tall to the left. The lift of the tail and the new location of the c.g. Will give the model the required right-hani moments. These adjustments are for indoor models
with a single bearing. For outioor models the correction is made by off -setting the thrustline to the right with the rudder set to the left for left-hand turning glide. For left-hand glide the stab is tilted with the right side down or with the wing down on the left side. Tilting the wing is very sensitive due to the great moment arm. The adjustment of the thrustine is about 2 to 3 degrees. An equation is given for estimating the off-set angle.

In case the pyion io low the torque and the gyroscopic moments are fairly balanced the rudder is set for a left-hand turn. The model climbing in a slow spiral does not need a thrust adjustment. Auto flapg are effective at the take-off and in a glide, but in a steep climb they do not affect the spiral. The flap is loosely hinged made of thin aluminum, attached to the left panel.

The counter-torque of helicopter models were balanced by the slipstream acting on three vanes having $1 / 7$ camber ratios. They may not work for very high pitch settings.

Biplane

COMSTRUCTION OF MEAN AERODYHAMIC CHORD. APPLICABLE ONLYTO ORTHOGOMAL BIPLANES

36

FLYIMG FLEA LIFT OF BIPLANE 15 80% OFAMONOPLANE OF SAME AREA UPPER WING CAPRIES ABOUT 56% OF TOTAL

ORTHOGONAL POSITIVESTAGGER
POSITIVE STAGGER
CEMTEROFGRAVITV

TOAQUE AND COUNTEA TORQUE TORQUE $O_{2}=\frac{\text { B.H.P } \times 1,000.000}{\text { P. }}$ ASSUMIHG BHP $=1.4 \mathrm{CU}$ IN. TORQUE OZ.M. $=\frac{C U .1 H \cdot 1,400,000}{\text { A.P.M. }}$ OFF-SET PROPAXIS

OFF $-S E T \stackrel{\circ}{\circ}=\frac{1.42 \alpha_{a}^{0} \text { TORQUE }}{A R^{2 / 3} \text { THRUSTOZ }{ }^{2} \text { IM }}$ IM.OZ, OZ,IHSYSTEM.
AFTER SUBSTITUTIONS: $O F F-S E T^{\circ}=90 /\left(D_{1 S T H} A R^{2 / 3}\right)$

FOf LEFT HAMD GLIDE
 DOWNWASH OF HELICOPTER BLADES. 3 VANES-CAMBER1/

FORIMDOOR MODELS

TiltingThe RIghtSide OF THE STABILIZER DOWNWAPD.

TILTIMGTHE LEFTSIDE OFTHEWING DOWNWARD.

AUTOFLAPSTORSTEEP CLIMBIMGGASMODELS: IH CLIMB FLAPIHLINE WITH CHORO, IHGLIDE FLAPADDSDRAG FOR LEFT HAHD TURH. Ho POWERTURMS BY OFF-SETTING RUDDER TO OBTAIHSIMILAR PERFORMANCES TOTALWEIGHT, ENGINE, PMOPELLEF DIDAHDD, DISTAMCE OF C.G. To THPUST LINE AHO DISTANCE OF CG TO L.E. OF WITAG.

Manufacturers Rease Yotice.

STABILITY. A flying model should keep on its intended path. Any deviation should be corrected by a force that will return it to its original position. The model will rotate about its c.g. at the instant it is disturbed. This restoring by an airforce is staibility. There is no PENDULUM stability.

To simplify investigation of stability only three main axes about which the model will rotate are to be considered. The movement about the lateral axis for longitudinal stability, about the vertical axis for directional stability and about the longitudinal axis for lateral stability.

The restoring airforce must locate in the direction of the change. Three sketches indicate their locations. The restoring velocity deperds on the magnitude of the force times its distance from the c.e., its weight distribution and on the general design. of the model. If the restoring moment is too large or too salall the model is unstable. With too large a rolling moment the model will flip over, too large yawing moment the model goes into a spiral dive and with a too great pitching moment the model will loop or dive. With the correct amount of restoring moments the model will have small oscillations about their axes, which is an indication of dynamic stability. Moments are positive if they increase the angle of attack and negative if they decrease the angles. Climbing moments are positive and diving moments negative.
Plotting the moments or their coefficients for various angles of attack will give a line which has a certain slope. The magnitude of the slope is indicative of the dynamic stability of each specific design. The point where the sloping line intersects the zero moment line is the angle of trim, the angle at which the model will fly on an even keel if conditions are fair.

LONGITUDINAL STABILITY.- An airfoil with a cambered mean line is unstable, its resultants move forward with increase of angle. Lowering the g.g. may make the model stable in calm weather. If the camber is small, a large, high aspeet ratio fin slanting backwards may give stability by the positive moments oreated by the drag of the fin.
The simplest means to make a wing stable is to place a tail in front or in the rear. The tail or stabilizer placed in back of the wing is more efficient. The incidence angle of the stab is always smaller than the one for the wing. This setting increases the moments faster than the ones created by the wing, a moment balance called longitudinal stability.

Many methods are possible for obtaining numerical values for the moments. All are only approximations and especially the ones calculated for dynamic stability. The graphic method used in the early stages of airplane designs oan be applied to model design in which the c.g. is well below the wing. Nomograms, alignment charts are very useful for stability calculations of models with the wing, fuselage, tail and thrustline on the same line. Moment oalculations are based on the distance of the 0.g. to the air resultants, on the magnitude of the air forces, on the area and on the dynamio pressure, q. Usually in comparing moments the dynamic presuure is omitted.

38

The propeller moments are estimated by an equation or a nomogram that give the value for one degree of yaw. To obtain the fuselage moments the maximum cross sectional area and the length are used. In summation the moments, the plus and the minus signs should be considered.

A graphic methot uses a plan or a scaled-down drawing on which the CL and the CD coefficients are plotted for varicus angles of the wing, with an interval of two, three or even four degrees. Similar layouts are made for the fuselage and the stabilizer. The relative angles between the units must be coordinated, especially the effect of the downwash must be considered when plotting the vectors of the tail. Ading all moments for a certain angle of attack, dividing it by the wing area and by the wing chord, the pitching moment coefficient is obtained. To find the actual moments in oz.in. the sun of the moments is mutiplied by the dynamic pressure and divided by 9.
In case a drawing is not available the diagrams on page 40 should be used and the positions of the c.g. are located on the diagrams. The diagram for the wing is based on an A.R. of 6 . Two sets of vectors are plotted; one set gives the resultants of the lift and induced drag coefficients; the other gives only the direction of the profile drag coefficient, because the coefficient is assumed to be constant. Two diagrams are given for estimating the effect of the fuselage. For any powered model use the diagram for the rectangular fusealge. The diagram for the wheels is based on a drag coefficient of 1.00 .

In all estimates the shortest distance from the c.R. to the vector is used. The moment or the moment coefficient is positive: if it tends to increase the angle and it is negative if it causes the decrease of the angle. The pitching moment coefficient is obtained by measuring the distance and multiplying it by the value noted on the vector. One such moment is found for the lift veo. tor and one for the profile drag coefficient. Adding to these two moment coefficients the Cmac and mutiplying it by the chord and the area of the wing the factor for one angle is letermined. The same procedure is followed for the other angles of the wing.

The factor for the fuselage is obtained by measuring the distance and multiplying it by the drag coefficient, by the value on the vector, by the length and by the cross-secticnal area of the fuselage. A similar method is used for estimating the fact or for the wheel or wheels by taking the diatance and multiplying it by the liameter and by the cross-sectional area. The prop factor is obtainet from the nomogram on page 40. The tail factor is found by the nomogram on page 41. Summing the factors for each angle and diviling them by the wing chord and the wing area, the pitching moment coefficienta are determined. Plotting the coeffisients againgt the angles of attack and connecting the points, a line is obtained whose slope is indicative of the dynamic stability for each specific desizn. To estimats the actual moments in oz.in. the sum of 311 factors is multiplied by the dynamic pressure and divided bv 9.
In case the thrustline is at a distance from the c.g. the factor can be calculated with the equations if the speed of the model is ass umed. In the above estimates the slipstream effect is neg-
lected.

Another method uses a greater amount of mathematical operations. The wing and the tail momentfactors are estimated by equations and nomograms given on page 41. The propeller factor is estimated by a nomogram on the page 40 . The fuselage moment factor is omitted.

Dynamic stability can be estimated by finding first the neutral point that is a location about which the static moments of the wing and the tail are the same for all angles of attack. The distance to the neutral point is from the a.c. Subtracting a certain distance, called the static margin, should give the location of the $c . g$. for dynamic stability. The static margin is about 15 to 25 per cent of the chord. An equation is given for close ostimate of the neutral point. For approximation a nomogram may be used, which is plotted by assuming that a few variables are constant. The static margin should be ottained for each specific design. It is obvious that static margin decreases as the distance of the wing from the fuselafe increases.

Vector diagrama, illustrated on a following page were taken from the reports of the Eiffel Laboratory 1915 , give the airforces of regular and tandem combinations, and the loads carried on the tail.

Nomograms on page 42 are for finding the neutral point of a model withe c.g. inline with the propeller sxis, the wing and the fuselage. The exposed engine may change the location of the c.g., because it will give a certair. climbing moment, which is balanced by moving the c.g. slightly ahead.
To obtain the c.B. location of a control-line flyir.j wing with the aid of nomograms, it is assumed that the area and the aspect ratio of the wing and the tail are the same, and that the distance is taken from the $1 / 4$ point to the elevator. The chord of the elevator shouli be at least 15 per cent of the wing chord. The location of the c.E. on a flying saucer can be assumed to be at 22 to 24 per cent of the maximum chord.
TUBBER: INDOOR CLASS B 30-100SQ.1N., C - $100-150$ SQ.1N, D-150-300 STAB 50% mAX. HAND-L'O STICK~ FUSE $\angle 2 / 150$ max. FLYING WING /HCL. CLASS B, CAMOD R.O.G. CABIM: CLASSB,C. WHEEL DIA.B-3/4", C-I" FUSE L2/100 MIN. 90\% COVERED, OUTRIGGERS + BOOMS R.O.W RISE-OFF-WATET CABIH.~B SSEC. FLOTATION. ALL GFLIGHTS - 3 BEST-TOTAL.
OUTDOOR: H.L. LIMITED, 200 Sq.IN. COMB., 5 OZ.MIN. 6 FLGHTS, 3 BEST. R.O.W. LIMITEO. 3 O SEC. FLOTATIOM

WATEFIELD, R.O.G. 263.5-294.5Sq.11. 8. 113 OZ MIM, RUBBEP. 2.821oz. MAX. P.A.A-LOAD

GAS FREEFLIGHT $1 / 2$ A -. O50curn,A-.051-200, B . 201-300, C - $301-.650 .60 \%$ FOR 4 -STROKE CYCLE. F.O.G. 100 oZ . P. CU.IN. 15 sEC OR 20 sec .' R.O.W ~ GFLGGTS-3 EEST.

F.A:I. $115.6 \mathrm{oz} / c \mathrm{c} .1 \mathrm{~N}$ MIN, .1525 cu.IN MAX. $3.93 \mathrm{oz} / \mathrm{sq.FT}$ MIN. 15 sEc. R.O.G. 2OSEC.OFF. 2 TIMERS. 5 h . 3MINUTES.-6th.

HORIZ.DIST. IH CHORDS
FORWING FACTOR =
DIST.FATIO \times CHORD \times WIVGGAREA

DIMENSIONS/H/INCHES
 FOR MOM' MULTIPLY DIST. EY WHEEL DIA, CROSS-SECT.,
FP $=.01$ DIA ${ }^{2}$ DIST AY W
FORFUSELAGE FACTOR-
YYDIST.RATIOBY LENGTH ANO

$Y_{A W ' G}$ MOMOF WING $=A_{w} q$ SPAN $\frac{\left[a^{2} w+\Delta a^{2} / 4\right)}{4170 A R^{1 / 3} w}$
ROLLGMOM of WING = AW Q SPAN $\triangle \alpha .039 A R^{1 / 3} / 2$ YAw'GMOM'T OFFIN= $A_{\text {FIIN }}$ q B.039AR $R_{F}^{1 / 3}$ DIST.
$a_{\omega}=$ ABSOLUTE ANGLE OFATTACK
$\triangle a-C H A H G E O F A H G L E=\beta G / 57.3$ $B=5 K I D$ AHGLE, $G=$ OIHE DRAL

TOOBTAIN CM COEFFICIENT ADO WING, FUSE,TAIL AMO PROP FACTORS DIVIDE BY WIHG AREA AH CHORD THEN ADO CMa.c.

STABILITY OF MODELS LONGITUDIMAL 4I

EQUATIONS FOR DOWNWASHBY DIEHL, WOOD, DOMMASCH $\frac{E}{\alpha}=\frac{4-L r / 3 C}{A R+2}$

44

DIRECTIONAL STABILITY. Directional stability is not only the restoring effect of vertical surfaces that keeps a model from yawing but also to keep it intentionally in a oirsling position. The resultant sideforce of the balancing moment should pass just above the c.g. This sideforce could be created by large vertical surfaces placed above the c.g. but the same effect could be obtained by a slight lateral (dinedral) angle of the wing. This interchange of wing dihedral for the necessary vertical surface effect brings the fin and the dihedral in a direct relation.

The size of the fin depends on the relative location of the wing, the fuselage, the propeller, the gyroscopic forces and many other disturbing forces. Fuselage and fin tested separately did not give the same result with the fin attached to the fuselage. This relation makes estimate of the fin area an approximation not only for the model designer but also for the large airplane designer.

The area of the fin depends on its aspect ratio, The higher the aspect ratio the greater the effect, as illustrated in a diagram. It indicates that an aspect ratio higher than 4 will only add weight, especially to models with low wing loading. The dynamic stability will depend on the weight distribution, the moment of inertia of the masses. The dorsal fin is not included in the estimate of the fin because it action starts only after the yawing angle passes 20 degrees 38 given in a diagram. For approximation for each specific design a nomogram gives the fin area in per cent of the wing area if the span and the distance to the fin is known. Two diagrams shows the interaction of fin area and dihedral angle. If the fin area is too large the model will go into a spiral dive if its too small it will have a dutch roll, weaving from one side to the other. A slight dutch roll is preferred.

The fin area required to balance all yawing moments will give only neutral stability, to which 5 to 10 per cent area is added for dynamic stability. The yawing moments of an oval fuselage are scill and therefore the estimate of the required fin area must be accurate. Designing and adjusting models with oval or round fuselages are only for experts.

Twin rudders should only be used if the height is at least half of the stab chord and the aspect ratio of the stabilizer is low. In any case it should be 20 per cent higher than a single fin. To reduce the interferance drag of a single fin a Vee-tail or butterfly tail is used which gives the combingd effect of the horizontal stab and the vertical fin. An equation is given for the estimate of the dihedral angle of the tail. Carg should be taken not to make the angle higher-than 15 degrees.

Radio controlled models use a portion of the fin for a rudder for performing most of the flying patterna a model can do with the adilition of elevat or control. The rudier should be serodynamically and statically weight balanced. The rudder should be an extension of a symmetrical section. Many rudiers have failed to overcome the gyro forces of an over-running propeller in a straight or spiral dive.

FIN $_{\text {AHD }}$ RUDDER. AFIEAS OF EQUIVALENT DIRECTIONAL EFFICIENCY

45

FUSELAGE EFFECT. FIMSQ. $1 H .=\frac{\text { OOFQ } \times \angle E N G T H I N}{\text { CIST } G T / 1 / 3 L}$ C.G- $1 / 3 L \quad D 15 T / H O$ FIN ABIBFIM
$F A=$ CROSS-SECTION INFUSE IM SQUAREIMCHES

Propeller EFFECT ON FIT AREA $A_{\text {REA }}=\frac{-20 D^{2} C G T O P R O P}{A R^{1 / 3} C G T O F / M}$ PEDUCIMG HITGE MOMEHT

VeE(Butterfly)Tail

VEETAIL AVAHTAGES WEIGHT SAVING, LESS CORMERIMTEAFEREMCE LOWER BLANHETIHG BUT MORE PROPWASH. BUTTERFLYTAIL TO GIVE EFFECT OF FIN aND Stab. $D_{1} H_{1}^{\circ}=30\left(\frac{\text { AREAE }}{\text { AREAT }}\right)^{1 / 2}\left(\frac{A \cdot R E}{A A_{T}}\right)^{1 / 6}$ $F=F /{ }_{\circ} H, T=S T A B$
DIH HOT OUEA 15°
FIN AREA FOR YAWED WINGINO FUSE,NOPROP)
YAWING MOMENT OFFIN
$=A_{F} q \beta \frac{d C L}{d \beta} \times D I S T$
$=A_{F} Q \beta \cdot 039 A R_{F}^{1 / 3}$ OIST.
COMBINIMG WITH YAWINGMOMENTOF WING
$\frac{A_{F I N}}{A W I N G}=\frac{\text { SPAN }\left[a^{2} w+\Delta a^{2} / 4\right]}{D I S T \cdot 160 B A R_{F}^{1 / S} A R_{W}^{1 / S}}$
SIMPLIFIED
$\frac{\text { AFIN }}{\text { AWING }}=60 \frac{\text { SPAN }}{\text { DISTK ARFIS APWU }} 1 / 3$

CENTRIFUGAL FORCE. A model in a curved flight path is subject to 2 centrifugal force (c.f.), which is considered to be acting through the c.g. In a steady circular flight the c.f. is usually balanced by aerodynamic forces or by the tension of the lines held hy the modeler. Bquating the veight with the c.f. the speed ie eliminated and the radius of a loop is found to be a lunction of wing loading and the CL. Therefore the smallest diameter of a loop will be performed if the model flies with the anele of CImax. The power however must be sufficient to generate a loop. The centrifugal force is reduced on top of the loop by the weight of the model and increased at the bottom.

Theoretically the model should follow a descendine oval. Nany times however free flight models made ascending loops due to the increase of the propeller thrust in the upward flieht. The propeller thrust may finish a loop without the aid of the c.f.
Equations and a nomogram for estimating the c.f. are given. One is to give approximate estimate for the diemeter of the steel wires used in control line flights. Tha stress is issumeito be 150,000 pounds p.sq.in. if the weight, the length of the line and the velocity of the model are known. Some of the wires, the genuine piano wire may go as high as 230,000 p.s.i.
GYROSCOPIC FORCES- The force created by the angular movement of the axis of rotating bodies, such as propellers, engines and the model itself, is the gyroscopic moment, which acts 90 legreas to its forced displacement in the dirzction of the rotation. If the displacing force is steady the axis of the masses will follow the surface of a cone, its velocity is the precession and the rate it may straighten out is the nutation.
To visualize the direction the rotating axis will deflect, a finger is pressed against a rotating pencil, which moves into the direction of the gyroscopic moment. Thus the gyro force of a right-handed propeller makes the model climb in a left turn and dive in a right-hand turn. The model turns to the left if its nose is turned downwari and turns to the right is its nose is turned upward. The gyro force is one of the MAIN force affecting the flying characteristices of propeller driven models in a climb.
Two general equations are given for estimating gyro moments. A nomogram will aid in finding the gyro force of an average waight propeller and of a $1 / 32$ in. thick steel plate. For a heavier plate the gyro force is in direct proportion to its thickness. For dur 21 discs use only $1 / 3$ of the forces estimated.
In order to use the equations the moment of inertia-I-or the weight of the body with its rafius of gyration about its axis of rotaticn must be known. The radius of gyration can be found by the bifilar suspension method. The time inlicated in the equation is for one full free axial, back-ani-forth swing in seconds. The length of the lines should be at least 10 times their spacing. The moment of inertia should be carofully investigated for radio control motels. The I may be also called the weight listribution.

Testing a 5 ft . propeller-driven helicopter, the gyroscopic moment was mistaken for the torque of the electric motor and the power estimated to be $2 \mathrm{~h} . \mathrm{p}$., which was impossible because it was only a $1 / 8 \mathrm{~h} . \mathrm{p}$. motor. Relocating the motor the gyro forces vere eliminated from the torque meter and the rieht answer was obtained.

47

DIHEDRAL. A banked straight wing will sideslip due to the resultant of lift and weight of the model. The resultant will, within limits, not move and the wine will keep on diving. Vertical surfaces placed on top of the wing will create small righting moments not sufficient for safe flying.

Greater moments are obtained by giving the wing a lateral anele, called a dihedral. In a sideslip a dinedraled wirg increases its angle of attack on the downwing and decreases it on the upwing. Two equations and a nomogram give the increase. The dihedral may be 100% or less of the semispan. A numerical example shows the advantages of a tip dihedral and the poor showing of a vertical surface equal to the projected wing. The comparison is for one wing only. The height of a vertical surface must be at least 40% of the span to give the same moment as a wing with a 10 degree dihedral. Square tips give greater moments than round tips. Rqual moments are obtained by a 100% semi-span with a 10 degree dihedral, a 50% gemi-span with a 15 degree dihedral and a 25% semispan witha 25 degree dihedral. The dihedral of a 25% semispan may be increased to 45 degree for great er moments. To estimate the moments the distance must be taken to the c.g. of the model and subsequently the nigher the wing the greater the righting moments. Normal dihedral will not increase the gliding angle but it will slightly decrease the lift.

Dihedral setting of the wing in cooperation with the fin gives lateral stability againat gusts, torque and gyroscopic momenta. Equations and a nomoEram give dihedral angles for gas, rubber and gliders. No safe dihedral can be given for rubber molels to counteract the maximun torque of a rubber motor weighine over 50% of the total weight of the model. A wing with a zero dinelral has actually a 2 degree effective slope. At very large angles of at tack the zero dihedral wing will give greater moments than the wing with dihedral. A negative dihedral, cahedral may produce the so elusive lateral stability of flying wings.

Teats on a radio control model.gdve perfect smooth flying with a 4 degree dihedral. Increasing to 6 degrees, stunting with rud-der-only became easier. The amount of dinedral, fin area and c.e. position will be specific on any design category.
> pegulations for contest rules Not official. Witite Fop Official Model Algcraft regulations to a.m.a.

GLIDERS:IMDOOR HATD LaUHCHEO-H.L. MAX AREA IOOSQ.IMTOIL AGEAMAX. 50% OF WING AIPEA. YIME FLIGHTS, ALLOFFICIAL. HIGHEST SCORES 3GLIDETS. 6 FTMAX LAUHCHIMG HEIGNT. OUTDOOR HANDLAUHCHED 30 TO 130 SQ.IN. STAB 50% MAX. FLYING WING $2 / 3$ OF AREA FOR CLASSIFICATION. 9 FLIGHTS TOTAL OF BEST 3.
TOWLIME: LIMITED COMBIMEDAREA 350 SQ.IN. MAX.IOOZ.MIN. 1~GLIOER ~ 40 SEC. OFF, 6 FLIGHTS, TOTAL OF BEST 3. GMIN. LIMIT: 328 FT.LINE $39^{\prime \prime}$ ELASTIC MATEIGIAL. $12^{\prime \prime}$ OIST. STREAMER

MORDIC, TOTAL SURFACE 495.9 TO 526.9 SQ.IM. MIM. TOTAL WEIGHT 14.46OZ. LIME IG4 FT

FOP OFFICIAL A-M.A MODEL AIfCRAFT PEGULATIONSWRITE
TO ACADEMY O MODEL AEROMAUTICS-1025 CONMECTICUTAVE.N.W
WASHINGTOM 6, D.C.

49

TAKE-OFF DISTANCE. Some models will take off without any rolling on the ground, others need a long starting run. The distance. depends on the design,wing loading power loading, thrust at the take-off and the resulting velooity of the slipstream.

Propellers of high powered free-flight models usually have a thrust Ereater than the weight of the model, which may lift the model off the ground, if the angle of the wing and the angle of the thrustline are over 15 degrees. This direct take-off will depend on the streamlined fuselage and on the cowled engine, because the drag of the parts affected by the slipstream reduces the resulting thrust, which is not sufficient for a non-run take-off. The take-off distance from a smooth surface is approximated by an equation, which includes the static thrust of the propeller.

CLIMB PATTERN A well designed and adjusted model will climb to the lerit, straight or to the right, and after the power is cut will glide to the left. The reason for the left glide is to take advantage of the ever present thermals. The highest altitudes are reachei with models climbing with a slow spiral.

The climb pattern depends mainly on the distance of the c.g. to the thrustline and also on the distance of the c.b. to the wing chord. In a steep climb the aerodynamic lift is reduced and two forces will decide on the pattern, the torque moment and the eyroscopic moment of the fast running propeller. The final pattern is fixed by the air forces of the rotating model about a vertical axis. The rotating model creates additional gyro forces which realy complicates the problem.

All models are set for a minimum sinking speed in a glide. This setting has a large difference of the zero-lift lines, which gives the tail a negative angle of attack in a steep climb. This unwanted drag can be reduced by climbing in a slow spiral, which may even place the tail into a zero angle of attack and give the model a maximum climbing velocity.

A model with a shoulder or top wing has its thrustline close to the c.e. If the molel is not adjusted, it will, after take-off, due to the torque moment, bank to the left.. The egnerated gyro forces will press the nose upard, circling to the left. The c.f. may flip over the model to the left side and dive in a tight spiral with the aid of the torque and gyro forces.

To adjust a model for a climb to the left in order to take advantage of the nose-up teniencyof the gyro forces a wash-in is given to the left wing and to meutralize the torque a right turn ia given to the fin. A slight left direction to the thrustine forces the model into a left climb. Left turn adjustment of pylon jobs is a chalenge to many old-timers.

50

A model with a high or pylon wing has the thrustline at a distance from the c.g. and from the chord of the wing. If the model takes off in a straight line it will turn under the influence of the torque to the left. This turning produces precession that forces the model into a circling to the right, and the same time adds gyro forces to the counter rotating model. This rotation of the model is retarded by the drag of the wing.

The adjustment is usually a right-hand thrust and a left-hand fin. Down thrust may increase spiraling. Some designars suggest a slight wash-in of the left wing.

In a spiral of a high-thrust pylon j ob the propeller axis describes a cons, with the c.g. and the wing on the inside. This conical rotation may increase to such an extend that the revolutions of the prop are reduced and the model stops climbing. The wing rotating on the inside of the cone gives a lower drag than rotating it on the outside. Giving the prop axis of a stick model sufficient downthrust to pass over the c.g., the model will climb with a slow spiral, with the c.g. on the inside of the cone, and the wing and the prop axis on the outside.

Sketches show the climb of models with pylon and high wings, Also sketshes give the positions of a wing rotating on the inside and on the outside. Two equations give the expected revolutions of a model with the wint on the inside.

The upward spiraling is also affected by the relative position of the propeller axis and the minimum inertia axis. The lower the angle difference, the higher the number of counter revolutions. The serolynamic qualities of a pylon job has small effect on the climbing velocity. The pylon model fliss with the thrust and the gyro forces of the prop.

It is apparent that the distance of the thr ustine to the $c . g$, decides on the flight pattern. The torque predominates on modals with a small distance to the o.e...and with a great listance the gyro forces take over. To take advantage of the helpful gyroForces and balance them partly by the torque, a model can be designed by placing the wing on a low pylon and the rudder below the fuselage in order to have the axis of minimum moment of inertia is at angle with the thrustine. This model may not need thrust adjustment, but must have a left-hand fin setting. The effect of the gyro forces of high speed propellers is the reason for reducing the r.p.m. on radio controlled models.

UP-GUSTS. Up-gusts will influence the stability of models , because they do not reach the complete model at the same time. They reach the wing ahead of the stabilizer and if the c.g. is behind the air resultant the model will balloon, and if the c.g. is ahead of the resultant the gusts will decrease the ungle of attack and in some designs the model will fly on an even level with a slight oscillation, the model is dynamically stable.

51
TAKE-OFF, NO RUN
TAKE-OFF, WITH RUN

> NXTNOEAMLIHING EXPEOSED EKGIHE

TAKE-OFF DISTANCE OF 775 SQIN. $8202 . .23$ cuIM. HERVILYLOADED MODELS DISTANCE 120-150FT.
SMOOTH HARD SURFACE 504 SQ .1 H .30 OZ . $05 \mathrm{cv} .1 \%$. $D / S T_{. F Y}=\frac{55 W^{1 / 2}}{A^{1 / 2}\left(T W / W^{-05)}\right.}$ DISTANCE $30-35 \mathrm{FT}$.

$$
\begin{aligned}
& \text { MAX. WIHG + POWER } \\
& \text { LOADIMG RELATIOH } \\
& \text { CU.IN. } \cong .35 \frac{A^{1 / 2}}{W^{3 / 2}}
\end{aligned}
$$

TO BEABLE TO R.O.G
FROM SMOOTHSURFACE

RETRACTIMGL.GEAR BYTOGGLE DESIGN

R.P.S OFMOOEL FROM Countertorque of Prop $R: R S=\frac{18,500 \times C U .11^{1 / 2}}{S P A N^{3 / 2} \times A R E A^{1 / 2}}$ $C_{D}=1.0$, SPAN-IN. A TYEA SQ.IM GUST 1 R.P.S: $=\frac{200 N^{3 / 4}}{S P A N^{3 / 2} \text { AREA } A^{1 / 2}}$ $M=$ EQUIVALENTSTRANDS of $1 / 8 \times 1 / 30$ RUBBER
ADJUSTIMG MOOELS WITH STREAMLINEO FUSELAGES MOTAS EASYAS WITHSQUAITE FUSELAGES. ADJUST WITH
C.G型 SPRECESWON

 WARP LEFTSIDE OF WIHG
W. LENDIMG EDGE UP (WASH-IM) LEFT THRUST, RIGHT RUDDEA
 PRGHTITVOOET
 SOMEGAS JOBS FLY WITHA. 15 TO THE RIGHT, wITHA .19 TOTHELEFT OR WITH A 9-G TO THE LEFT, 9-4 TO THE PIGHT OH UP.

TAIL SETTING SUFFICIENT FOR IMDOOR FLIGHTS MANY GLIDERSWILL SPIPAL DOWH FLYING OUTOOOIT ITLLGHTTHERMALS.

52

SPIRAL STABILITY. Models may circle on the end of a line or in a free-flight attitude. Control-line models require only horizontal stability, which is often replaced by the dexterity of the operator. Spiral stability covers a large section of the general stability problem.

Free-flight models will rotate about an axis through the c.g. which has the lowest mass-moment x distance value. The first force acting on a model starting a circling flight is the c.f., which causes the model to skid and consequently increase the lift on the outer wing. This places the model into a bank, followed by downward spiraling, which would become tighter if a rolling moment started on the inside wing is not adequate to keep the model on an even keel.

In a steady circling flight the outside wing has a smaller angle and a higher velocity than that of the inner wing. In a balanced condition the resultant air forces should meet at the line of symmetry passing through the c.g. Also the resultant of the c.f. and the gravitational forces should balance the air forces. This is an ideal balance of forces in which the fin moment may be equal to the propeller and fuselage moments. The torque and gyro moments need additional corrective measure to balance their effect. In an ideal circling flight, known to pilots of light planes, the yawing moment of the fin is equal to the combined moments of the propeller, the fuselage and the wing.
A model stalls in a straight glide and flies in a large circle to the left and with power on, however it stalls flying to the right. If moving the thrustline closer to the c.g. (downthrust) and the action of the slipstream cannot be made to correct the stall, the model should be adjusted to fly in a smaller circle. A diagram shows the moments of a model with the thrustline below the c.g. causing a positive (stalling) moment of 12 oz . in. The effective tail setting is minus 6 degrees when flying in a straight line. Adjusting the model to fly in a 60 ft . circle the stabilizer will add a 12 oz.in. negative moment, which was obtained by the change of the tailangle from minus 6 degrees to minus 4 degrees. In case smaller circles are required for stability the reserve power ani the vertical component of the lift forces muat be sufficient for a banked flight.

Another case of spiral stability occurs when a model flies into a rising air column. This rising air (thermal) moves upward to the right in a slow spiral. A model reaching this column of circling air will reduce its tail setting by increasing the lift on the tail, whish makes the model dip inmediately. This diving is the result of the movement of the vectors toward the trailing edge due to the reduction of the tail setting. This places the c.k. in balance with a resultant of a smaller ande of attack of the tail, which increases the gliding and the sinking speeds. Two diagrams show the two position of balance. After the model reaches the thermal and the diameter of the rising air is suitable for a balance it may stay with the riser. The high peripheral velocity of the riser will give the model a large banking angle.

53

Too high directional, weathercock stability will result in a spiral instability. In crease of the fin area should follow with an increase of the dihedral angle. The increase of the linedral is of less influence on directional stability than the increase of the fin area. Spiral instability is easily observed by longer spirsls in the direction of the disturbance. Due to the everpresent thermals some models are stable to the left and others flying to the right.

In circling the ratio of rolling moment and yawing moment is different for each kind of design. The rolling moment is proportional to the lift coefficient and the yawing moment to the change of induced drag. The greater the ratio the faster the recovery, The ratic shows that the recovery increases with the increase of the aspect ratio of the wing. This however does not give the real condition of dynamic recovery, which must use the function of mass distribution, the moment of inertia of the wing in the equation. The moment of inertia is in direct relation to the aspect ratio, and the rolling moment is affected in a greater amount than the yawing moment is. therefore dividing the ratio by the aspect ratio an equation is obtained that favors lower aspect ratio for recovery, a characteristic observed by pilots of racing planes. The equation also indicates that the recovery is slower with increase of the angle of attack.
A fast diving, spiraling model is the outcome of an oversized fin, a low dihedral or a low tail setting. This kind of diving is observed when flying indoor gliders in the outdoor. This spiraling does not signify spinning, which is the descend of a model at an angle past the stall angle on the inside wing. Diagrams shows the inclination to spinning of a rectangular wing and a wing with rounded tips. Another diagram give the range of the angles of attack that tend to induce spinning of a monoplane and a biplane.

CONTROLLIME ~ 3 $\angle 1 H E S, G O F T, ~ I L I M E F O R ~ E N G I N E . ~$ SAME FUSELAGEAMO. 35 cwiIM. EHGIHE, AFEA VARIED.

SAME. 35 eU.ITM. ENGITE, MODELSCALEO DOWH.
 AHO Minimum Atea.

55

CFSNTER OF LATERAL AREA. - Years ago the center or centroid of the lateral area of a model was assumed to be the ultimate reason for its spiral stability if the line through the c.g. and the c.1.a. had a certain angular position with the thrustine. The c.l.a. is the center of the sideview of a molel with twice the wirg and wheel projecticns. The displacement axis about which the model should roll is the line drawn through the c.e. and the c.l.a. No fixed rules were given for the c.l.a. Is long it was behind the c.e. location. It was suggested to uss the c.l.a. for estimating the aize of the fin, without the consideration of aspect ratic. Some radic model designers suggest to apply the c.l.a. to obtain a smooth flying. Others again go as far as to deny any effect by placing the fuselage area above or below the c.g. It should be mentioned that any change will affect flying characteriatics of models. For clearer perception of the c.l.a. each major unit of a model will be compared with its known values.

A fin with an aspect ratio of 3 is placed vertically gives twice the moment if placed horizontally. The sidesiew of a stopped propeller will give the right value; a running propeller however will give higher values, because its effect is assumed to be equal to a surface with an aspect ratio of 8 , as suggested by the N.A.C.A. Tests on model propellers indicated that the p / D ratio of the propeller influences the moment about the c.g. The effect of the projected area of a wing can be given by an example. The projection of a wing with a 6 degree dihedral has a 10 per cent height of half the span. Assuming that the distance to the c.g. is $1, \frac{2}{2}$ of the chord. The wing woth an aspect ratio of 8 will have its incease at the 2-chord distance and about the same distance to the c.g. Assuming that the aspect ratio of the projected area is 3 , then the moments of the wing will be 6 times the one given by the projecticn. This difference will be greater if the wing is built with tip dihedral.

The projected area of a landing ear can he assumed to follow the c.l.a. value. One unit that may give values in the reverse is an exposed engine if it is compared with a cowled engine. The exposed engine has a CD of 1.0 and if the engine is cowled the side area increases thres times the $C D$ however is only .25. This indicates that the error amy be 12 times the assumed one. A similar divergence will be found with pylons, which usually have symmetrical cross-sections.

A big error is made by applying the c.l.a. to fuselages, which have their c.l.a. at the $40-45$ per cent distances and their c.p. at the 25 to 30 per cent distances. Two basic designs with equivalent side areas, a square and a round fuselage are shown 6 ith their forces at a 10 degree angle. The force for the suqare fuselige is three times higher than one for a round fuselage.

The side area and its c.l.a. has no relation to the agsumed rolling moments created in a skidding of a model and its rotating axis about the c.e. and C.1.a. line. All bodies rotate about the c.t. When displaced. There is however an axis about which it will rotate with the least force, The force resisting rotation depends on the moment of inertia (I) of the body. The moment of inertia with respect to a given axis is the sum of the weights or masses times the square of their distances from the axis. Plotting the moment of inertias on various axes the ellipse of inertia is obtaired. The axis of the minimum inertia is vertical to the axis of
maximum inertia.
Applying the mass or weight distribution to models many observations made by designers and builders will explain some of their flying characteristics. Radio equipment may be located at a disadvantageous place which may make it unstable, because the increase of the inertia required oreater control moments.

A certain inertia is required for each free-flight design to slowdown violent angular displacement by the prevailing outdoor air disturbances. Similar to the birds and boats for bad weather and for higher wind speeds the loading per sq.ft. of the supporting area is higher. The moment of inertia of a model can $c e$ determined by the bifilar suspension or other methods suggested by books on aerodynamics. In case the length and the spacing on the bifils suspension is kept the same, the time of the oscillations will give comparative values. The moment of inertia may be estimated mathematically. The value of the inertia will be too low because the air moving with the model when tested is from 5 to 10 per cent higher.

The use of the axis of the minimum inertia instead the neutral and the displacement axes mentioned with the c.l.a. theories (Ch. H. Grant 1941) will follow closer to the mass dynamics than the area distribution. It is obvious that the replacement of the areas by the masses, or weights would have given a closer stability estimate than the one obtained by the c.l.a.

The angular setting of the axis of minimum inertia with the thrust line will give various flight patterns especially a model goirg into a turn when operated by a radio controlled rudder. The inertia axis may point downward, or be inline or point upward from the thrustine.

In case the axis of minimum moment of inertia is in line with the thrustline and the rudder is operated, the model will skil and the dihedral effect a bank without changing the angle of the thrustiine. and if the circling will not increase the angle of attack the model will spiral downward. In case the axis points downward and the rudder is operated the model will turn, bank and the thrustilne will point downward and the model will go into a fast spiral dive. In case the axis of inertia points upivard and the rudder is operated the model will skid outward, bank and the thrustline pointing outward adis to the skid. The angle of attack increases which balances the lift for a level circling flight. The return to a straight flight will be without viclent maneuvers. The advantage of the inertia axis pointing upward is observed by the performances of models with pylon wings and models with their fins below the fuselage. The performances will also be influenced by the location of the c.g., the propeller and the r.p.m. of the engine.
In order to produce a min. I axis that has a positive angle with the thrustline, the units or weights must be distributed about that axis. This may be evolved by moving only the wing higher or placing the tail or the rudier below the fuselage.

CENTER OF LATERAL AIPEA C. L.A. COUNTER TO 57 MOMENT OFIMERTIA

ROUMOFUSELAGE EQUAL MORMAL FORCE 1.0 SIOEATEAS. MORMAL FORCE 3.5

MOMENT OF MERTIAT
 STRAIGHT-AWAYS AHDTURHS.

ELLIPSE OF INEPTIA

SOLDS OF PEVOLUTIOM LONG'L AXIS MIH.TORMAXI

A "MUST" FOR RADIO CONTROL MODELS

DURATION. Contests for free-flight models are conducted for maximum duration, with specified time limit accepted for each flight. In a tie an additional flight is made without limit to fix the winner. Clipper cargo planes are designed for a maximum time of 40 seconds, which is accepted as an official flight.

The duration depends on the power available and the power required to fly horizontally. Tisis minimum power is also equal to the weight times the minimum sinking speei. The difference between the power available and the min. power is utilized for the climb. For each value of reserve power and weight a certain climbing angle will give a maximum climb distance. A diagram shows the climbing ve.. locities for varicus angles and for varying thrusts. After the power is shut off the subsequent gliding time is added to the total duration.

If the power delivery is limited, as for gas and jet engines the fastest climb and the slowest sinking speed will decide the duration of the flight. A didgram shows the power required for a model and the power delivered by an $8-4$ and $8-6$ propellers. The difference indicates that the apparent flying speed does not give the highest climbing speed. The greatest difference of the powers gives the fastest climbins speed.

The duration for a limited engine run and the model climbing on a medium angle is given by a simple equation, which is the ratic of power available and power required for horizontal flight. By interpolation and assuming that the power delivery of an engine is proportional to the cu, in. displacement, an equation is formulated, which uses the function of the area and the weight of a model in estimating the duration.

In some contests the area is not limited and the maximum duration will depend on the ability to build extra light but atrong wings. Because the weight of a wing increases with the $3 / 2$ power of the area, there is a limit to the size of a wing a given engine is able to take off. An equation shows the relation of the area for maximum cargo and the displacement of the engine.

The thrust of the propeller driven by b2s engine is usually higher than the total weight of regular free flight models and a steep climb will give maximum duration. The híh thrust is divided between lifting the weight and overcoming the drag of the model. The steep climb eliminates the induced drag and by adjusting for circling flight the negative angle of the tall is reduced, whish consequently reduces the total drag. The motel will climb with the lowest drag possible.

To estimate the climbing speed, the net horse power delivered by the propeller is assumed to be $.60 \times$ cu.in., the $C D$ equal to the CDpar and the CDinin of the wing. Jae the diasram for direct entimate of the climbing speed. For medium climb the ratjo of the available power and the required power multiplied by the engine run should be the duration. In estimating the sinking speed, the drag of the stopped propeller should be included. An approximate sinking speed may be estimated by an equation, which is based on a lift coefficient of .80 and a gliding angle of 9 .

The same procedure is used in estimating jet driven models. Rubber driven models have a problem by themselves, because the torque varies with the number of turns left on the motor. It has always been the contention to reach a thermal with the fastest climbing speed, without any thoughts about efficiency of performances until the contests were conducted at a time when thermals were supposed not to be present. This started the designs of propellers to fly the molel horizontally at the end of the motor run. This increased the motor run close to twice of the former time. No theoratical equation has been developed that uses the varying torque of the rubber motor. Equation can be formulated by assumine that the altitude reached is in direct proportion to the mojent of the rubber and tiat the duration is equal to the weight of the rubber iivided by the sinking speed corrected with a constant derived from performances. An equation and a nomogram are given for direct estimate of the duration.

Other equations for rubber driven models are given for hydros, ornithopters, helicopters and autogyros.' The areas in all rubber driven models are given in the square root of the areas and therefore the roturs are expressed by their diameters.

For detailed estimate of performances of rubber driven models the work stored in one ounge of rubber should be taken from 30,000 to $35,000 \mathrm{in} .02$. and the efficiency of propellers from 40 to 50 per cent.

COMTROLLINE-SPEED $1 / 2$ A~ $0.050-35 F T$, $A=.051-20-521 / 2 \mathrm{FT}$, B-.201-.30-60FFLINC

TEAM RACIMG 125 SQ.IH MIM. 15 -. 40 cu.ir., 1.8 cuirm. TAMK GOFF LIME. 33/4" $\times 2$ "FUSELAGE. 21-70LAPS. ENGIHE SHUT-OFF 20G PULL. PRECISIOMACROBATICS CLASSA O-.20, B=201:30 C $=301.65$ 521/2 To 70 FT. SCALE COHTROL $4 L B$. MAX. 1.25 CUIM.MAX. IOLAPS. EXTRAPOINT: CON. DETALLS SCALE FPEEFLIGHT. 050 cW.IN. $150 \mathrm{oZ} /$ CUIN.MIN. RADIO FREEFLIGHT: (1) RUDDERONLY, (2) NORESTRICTIOMS. COMBAT~. 35 cu.IM. MAX. 60FTt-6IN. STPEAMERBFT, 2FT.CORD U.S. MAVY CAPITIEQ DECK EVENT. 44 "MAX. SPANH, A, B, C, D ENG. GOFT. LINE. TAME OFF 22 FT-LAHDIHG 22FT. 100 Points NAVYPROTOTYPE, 7 LAPS EACH SPEEO DiFE: $30 / \mathrm{MILE}$ IPOUMDTHE POLE (RT.P.P) Boz. MAX-FOR SPELD PUBBERA-IOZ B-2Oz. (EHGLISH)

$T H R U S T=W$ SIMB + DRAG \quad DRAG $=A C D .0012 \mathrm{~V}^{2}$ $\angle / F T=W \operatorname{COS} B \quad V S I M B=V C L I M B$ THRUST $\times V=P O W E R=W V C L M B B+A C D .0012 V^{3}$ $\frac{\text { METHP }}{W_{\text {OZ }}}=\frac{V_{G L}}{8800}+\frac{C D_{P}+C D_{M}}{02 / 1000 \text { M }} \cdot \frac{V^{3}}{660.000}$ SLEEPB IMOUCED DRAG OMITTED. $C D=C D_{\text {PAR }}+C_{D M I N}$ NET $Ю=$ EFFX H P EFF $=35-50$
OBTAIH FROM CHART THE CLIMBIMG SPEED DIVIDE BYSIMKINGSPEED, ADD 1 AHD MULTI-
STEEP CLIMB PLYBYENGINERUNTOGETDUPATIOH

 102090405060708090 CLIMBIMG SPEED.
M.P.H.
APPROXIMATE SINKINGSPECD $V_{S}=11 \times \frac{W_{O Z} 1 / 2}{A_{\text {SQ in }}{ }^{1 / 2}}$ FT.P. SEC. DURATION FOR HYDRO R.aW TIME-70 WRAV/ $/ W_{T} 3 / 2$ SEC. DURATIOH FOR HELICOPTER TIME $=40 \mathrm{DIA} \times W_{R} / W_{T} 3 / 2$ SEC. DURATION FOR ORHITHOPTER TIME $=15-30 W_{T} A^{1 / 2} / W_{T}^{3 / 2}$ SEC. DURATION FOR AUTOGIRO: TIME $=30 D_{I A} W_{R} / W_{T}^{3 / 2}$ SEC.

61

DETHERMALIZERS. After a free-flight model comes close to its maximum time accepted by the contest rules a mechanical device or fuse should release a dethermalizer unit that increases the sinking speed considerably over the velocity of the riser, but do not damage the structure when landing, and keep the model within the contest area.

The simplest device seems to be a parachute. Analysis by equation shows that a small parachute increases the sinking speed by 100 to 150 per cent. A large parachute will not increase the sinking speed, it will however steepen the glide. The chute should be at least 12 inches in diameter, with a bleeder opening and at least 6 shroud lines to insure opening.

The safest and generally used arrangement is to increase the angle of the wing or the angle of the tail. Increasing the angle of the wing is used on jet models, which have a very thin rear body section for mounting a reliable hinging tail. On regular rubber or gas jobs the tail angle is increased by 35 to 45 degrees. which gives the wing a 60 degree angle of attack, increases the sinking speed 5 to 10 times and the gliding angle from $1: 10$ to $1: 1 / 2$. A diagram shoms the balance of forces after the pop-up of the tail and of the wing. It also shows the relative position of the fuselage in the glide. Timers should be used to realease the device and in case fuses are permissible the burning length is adjusted to 1 to 2 inches for each minute.

COMPARING DESIGNS. To compare designs belonging to the same category an equation is derived from the two basio equations for speed and power, which gives a combination of the design units against the combination of the aerodynamic coefficients, the values of power or sinking speed. The power in the equation may be replaced by the weight of the rubber, the weight of the jet pellets or by the cu.in. of the engine. The combinations of the voefficients is applied to selections of airfoil sections for minimum power or for minimum sinking speed. Squaring this ratio a simpler one is obtained, which is the cube of the lift coefficient divided by the square of the drag coefficient. Sections should not be compared without the additional parasite drag coefficient. A numerical example shows the effect of the CL and CD coefficients on the gliding angle and on the sinking speed by having two c.g. locations; one at the $1 / 3$ chord distance and the other at the $2 / 3$ distance. Many assumptions are made in order to obtain an answer to the investigation.

ZERO-LIFT LINF SETTING. Each category of model design will have a specific zero-lift line setting for satisfactory horizontal stability. It will be less for indoor models than for outdoor jobs, especially when windy and gusty weather prevails. The difference of the zero-lift lines is also called the longitudinal lihedral. The increase of the setting moves the $c \cdot \mathrm{E}$. closer to the leading edge and the slope of the pitching moment coefficients becomes steeper. Suggested values for the setting of the zero-lift lines are given on the following page.

DETHERMALIZER
COMPARE SINHING SPEEDS ${ }^{B y} V_{S}{ }^{3} C D / C R^{3 / 2}$
$C A=\left(C D^{2}+C L^{2}\right)^{1 / 2}$

ANGLE OF ATTACK

OHE ORTWO

PARACHUTES $12^{\prime \prime}$ DIA-4"BLEEOER HEAVY 5 ILW. MIM. 8 SHAOUDS.

COMPARING DESIGNS

EXAMPLE: $C_{L}=4$, SPEED 3OFPRS. POWERLOADIMGAMOTHE ANSWER: LIFT $=50 \mathrm{~L} / 100$ SQ.IN.

WIHGLOAOINGCOMBIMED.

DIUIDEMETHORSE POWER BYTHE EFFICIEHCY OF PROP TO OBTAIN BH.P.

PERFORMANCE-TwO CG LOCATIONS ω. $1 / 3$ TAIL SIMHIHG SPEED FUNCTION: CO: $\cos ^{3 / 2} B$ assume $\cos ^{2 / 8}=1 \mathrm{CL}^{3 / 2}$
LOWEST SIHKING SPEED FOR MAX. $L^{3 / 2} / C D$.

$\frac{C L^{3 / 2}}{C D}=\frac{\left(C_{L W}+C_{L T}\right)^{3 / 2}}{\left(C_{D P R}+C_{O A R}+\frac{C_{L W^{2}}+C_{2}^{2}}{\# A R} \frac{C_{A R}}{\pi A R}\right)}$
CDPROF + CDPAR $=.10$
C.G. AT $1 / 3$ CHORD
$C_{L W}=8 \quad C_{L T}=O C_{D I T 1}=0252$ REDUCTION OF SIHKING
GLIDIHGAHGLE $L /=6.38$ VELOCITY $7.6 / 5.7=1.33$
$C L^{3 / 2} / C D=5.7$
W FOR WIHG,$T=$ FORTAIL

BY 33PER CENT.
STABILITY MORE SENSITIVE.

IHCREASE CL onTAIL To. 73 CG MUSTBE AT. 66 CH .
$\frac{C L}{C D}=\frac{(.8+1 / 3 x .73)}{(.10+0254+.014)}$
$C L / C D=1.04 / .14=7.45$ $C L^{3 / e} / C D=7.6$

ZERO LIFTLIME SETTIMGS. INDOORGLIDER 3° IMDOORITUBBER 4° OUTDOORGLIDEA 6° TOWLIME 7° OUTDOORRUBBER $4^{\circ}-6^{\circ}$, GAS 6-8. RADIO $91 / 2, \angle I M E C O H T R O L$ SPEED $23^{\circ} 3^{\circ}$ STUHT 0° TEAM RACER 4° RUBBERSCALE 5-6\%IMDOOR R.O.W. 8° FLYIHG BOAT $8^{\circ}-9^{\circ}$ ZERO-LIFTLIMESETTIMG DEPENDS ON TAILAPEA, C.G LOCATION amd Camber Ratio of Wing.

63

GLIDERS. Nature's best glider is the leaf of the Zanonia Macrocarpa, which carries a seed and has washout tips; it will glide up to 5 miles. Its dimensions were used for construction of a man carrying glider. After many successful glides it was powered but could not take off because the landing gear prevented the increase of the angle of attack for take-off. Another plane with a standard tail, the "Taube" (pigeon) was built which after a short term of success was abandoned, because its spiral stability was poor. An era of biplanes followed which gave way to monoplane, a design aviation started with.

Not many glider models were built before the turn of the century. Some used solid mica wings for scientific testing. Usually the material was stiff paper, silk stretched bet\#een bamboo, wire or ratan frames without camberei ribs. For structural connections cork was used. The real interest started when bals3 was commercially obtainable for building paper covered or solid balsa gliders.

Gliders are hand-launched or released by a towline. Each has a different problem. Hand-launched indoor gliders should have a minimum drag traveling upward and a maximum lift gliding downward. An equation has been developed for the duration and height of indoor gliders. Diagrams give performances of gliders with various weights and launching speeds. The height reached is in close relation to the weight; the duration however is limited to the initial speed. Contests are won with thin airfoil sections and flat lower surfaces. and polydihedral wings. Better time could be made if the rear section of the wing were made flexible, with an underamber and a straight dihedral. The zlider should climb in a slow right-hand spiral to the ceiling and glide downward to the left. The high launching speed flexes the wing and the spiral climb reduces the tail setting, which add to the height to be reached. The average time for the upward travel is 1 sec .

The material for the wings is 5 to 6 lb.p.cu.ft. balsa, with a hardwood leading edge. For the body a 7 to 8 pound balsa will give the necessary sytength and slenderness. The same weight balsa is used for the tail surfaces. The dinedral break corners are rounded with small fillets. To balance the glider clay should be omitted because the clay increases the irag of the body by 100 per cent. The whole glider is costed with a glider polish, a clear dope plastisized with a few drops of castor oil. This will pervent war ping by slowing down the drying. Some model builders protect the lealing edge by placing a steel wire into the nose. The finished glider should weigh between $3 / 4$ to 1 oz. for 100 sq.in. of wing area. The tail setting of the zero lift lines is from 3 to 4 degrees, usually not sufficient for out door flying, especially when risers are present.

The towline glider has only one problem for selecting in airfoil section, the thinnest section suitable for a strong, high aspect ratio wing with the lowest sinking speed. This section may be the N.A.C.A 6406 with an aspect ratio as high us 11 to 12 . The wing at the $1 / 3$ length of the fuselage and balanced with weight if necessary. Triangulation for the wing and stab will be required to prevent warping, which also may call for bass wood spars. The suto-rudder construction may have to be balanced by a small fin ahead of the wing.

64

The location of the vertical control surfaces below the fuselage not only gives the rudder ani the fin an undisturbed airflow but. also eliminates blanketing by the fuselage and by the stabilizer. A vee-tail will counterbalance the negative rolling moments of the vertical surfaces below the fuselase.

The hook for attaching the twoline for launching should be 60 to 80 degrees ahead of the $c . g$. depending on the drag of the fuselage and the location of the aerodynamic chord. The hook is attached to the left side if the glider is set for a left glide and placed in the center if an auto-rudder is used. The auto-rudder is connected to a hinged hook in order to set the rudder inline during the launching and after release will move it for a left glide. The tail distance is from 3.5 to 4.5 chord-wilths and the tail has an aspect ratio from 5 to 6. The araz is from 15 to 20 per cent of the wing area. This low ratio is due to the absence of the moments oreatel by a rotating propeller. It may be also caused by the inclusion of the tail area into the total allowable area.

In case the climb during the launching is too fast, the glider will move on the outside of the circle, which will increase the download on the stabilizer and move the vectors toward the leading edge. This may make the glider laterally unstable.

Two specifications are in use for contests. One is for limited gliders with a maximum total supportins areas of 350 sq.im. and a minimum weight of 10 ounces. The other is for Nordic gliders With a total surface area from 263.5 to 294.5 sq. in. and a minimum welght of 14.46 ozs . or 3200 to $3400 \mathrm{sq} . \mathrm{cm}$. and 400 grams . The limitel will give $2.85 \mathrm{oz} . / 100 \mathrm{sq}$.in. and an approximate sinkinspeed of $2.04 \mathrm{f} . \mathrm{p} . \mathrm{s}$. and for a Nordic $3.65 \mathrm{oz} / 100 \mathrm{sq} . \mathrm{in}$. and a sinking speed of $2.3 \mathrm{f} . \mathrm{p} .3$.

GFFICIBNCY OF STABILIZGR. The effectiveness of a stabilizer is reduced by the proximity of a fuselage or a fin. This interference depends on the relative size of the portion of the fuselage next to the $s t a b$, the aspect ratio and the plan view of the stabilizer. The angle of attack also influences the efficiency. The slipstream and the downwash make adiltional inroad on the efficiency of the atabilizer.

If the elevator is a part of a thick symmetrical section, it may not work for 2 degree deflection, because it is within the turbulent air leaving the airfoil at the separation point. This is corrected by drawing a symmetrical section of a shorter chord and two tangent lines from the trailing elge of the original chord.

Leak is stopped by sealing the hinge gap. A chart gives elevator tests, which indicates that the larger the ratio, the greater the lift. A sketch shwos the connection of flap and elevator on a control lins model. The flap angle should be $1 / 3$ of the elevator angle.

MATHEMATICAL DEVELOPMENT O HANDLe pUNCHED GLIDER
FORCE REQUIRED $f=m \times a=m d v / d t$ DRAG $=$ CONSTANT *V ${ }^{2}$ LESS WEIGHT $m \quad d v / d t=-K v^{2}-w \quad w=m \times g=m \times 32.2 \quad V=d s / d t, \quad 1 / d t=v / d s$ $m v d v / d s=-K V^{2}-w \quad d s=m v d V /\left(-K V^{2}-w\right) \quad$ INTEGRATING $\int d s=\int m d v /\left(-K v^{2}-w\right) \quad S=-\left[\frac{m}{2 K} \log \left(K V^{2}+m g\right]_{V_{0}}^{V}+C\right.$ TOFINDC ASSUME $S=O$ INITIAL SPEED Vo $S=m /(2 K) \times \log \left[\left(H v_{o}^{2}+m g\right) /\left(K V^{2}+m g\right)\right]$ AT MAXIMUM HEIGHTVIS ZERO. THEN THE HEIGHT REACHED $S=m / 2 \mathrm{~K} \cdot \operatorname{LOg}\left[\left(H V_{0}^{2}+m g\right) / m g\right]$ DURATION $=S /$ SINKING SPEED 5. HEIGHT, MIG $=W, K=A \times O O I I G \times C D$ MM, V O INITIAL SPEED FT/SEC

COMBINING WITH SINKING SPEED $V_{S}=29 W^{1 / 2} \times \cos B^{3 / 2} C D /\left(C L^{3 / 2} A^{1 / 2}\right)$ $\cos B^{3 / 2} \sim 1.0 \quad$ DURATION $=.0005 \frac{W^{1 / 2} A^{1 / 2}}{K}\left[\log e^{\frac{T^{2}}{}+W} \frac{C L^{3 / 2}}{W}\right.$

GLIDER

Zerolines $67^{\circ} \mathrm{M} 1^{\prime \prime} 1^{\circ} 12^{\circ}$ DIHED.

HOOK CALM 80° TO C.G. UIMDY WEATHEA 60° AOOFIN ICB
TOBMLAMCE AUTORUDDER
TAMFIM
HORIZONTAL TAIL

FLAP - ELEV'R ccg. Linecontrol
FLAP ANGLE $1 / 3$ OF ELEVATOR ANGLE.

LIFT DISTRIBUTION

$$
c_{L}
$$

$E=C \times \quad 1 / 4 \quad 1 / 3 \quad 1 / 2$ LTAB ${ }^{\text {STEV } 20^{\circ}} .44$. 64.70 $\begin{array}{llll}\text { MAX.CL } & 1.15 & 1.15 \quad 1.22\end{array}$ E.ATAHGLE $13^{\circ} \quad 13.5 \quad 14^{\circ}$

ADDITIOMAL PROFILE DAAG FROMCORNER INTERFEREMCE

67

FLOATS and HULLS. Wodels taking off the water (R.O.W.) use floats or hulle. The floats should be of simple construction with a low drag near to the take-off and in the air. The buoyancy should be 3 to 5 times the loai they carry ir the norsal condition. The volume is eatimated for .54 oz. per ou.in. displacenent. The weight of the total displaced \#ater will be equal to the veight of the model. The c.g. of the displaced water is a point through which the line of the righting moment passes. Tilting the model and drawing a line through the center of buoyancy parallel to the gravity line will intersect the line of symmetry at a point callei the metacenter. Wetacenters are determined for various lateral angles and if the metacenters are above the c.o. of the model, the model is hydraulically stable. This investigation is ußually applied for checking stability of flying boat hulls.
A nomogram and an equation give the displacement of floats if the langth is twice the width and five times the height of the fleat. The volume of a float or hull can be estimated by the sroduct of the three dimensions and a design factor, which varies from .45 to , 70 . A flat step gives the be3t lcai-irag ratio, but will often porpoise and must be ventilated. A Vee-step is better but hard on construstion details. The best all around is the pointed flat step for smoch and greater range of "planing". In case any porfoising appears a ad no other adjustment heipo, a plate placed back of the step at a negative ancle will aic in bringing the model to the "top". This plate is oftan noceseary on scale models. The location of the step is $1 / 5$ atrad of the c.8. for norwal loads. For top loads the step is slichtly forvard of the $1 / 5$ ratio. The hull has usually it dead rise of 22^{\prime} degrees it the bow and reducing to zero at the step. Some wodelers like a flat bottom at the bow to prevent Aiving under water on a steep landirg. The step shouli be an invertei vee. A smali apray strip will stop alimbing of water on the side of the hull. The zero-lift line of the wing should be 2 to 3 degree positive with the bottom of the hull. The difference of the zero-lift lines to be 8 to 9 legrees. The thrustline should be set at 4 degrees with the zero-lift line of the wing.

The maximum width or beam of the hull for normal loaiing is proportional to the square root of the wing ares. For higher wing loading the bean should be wider or the power lowing should be decreased for a possible take-off. The design of the hull is based on the dimension of the beam. The overall length is from 8 to 12 times the width of the beam. About 45 per cent of the leneth is used for the fore body of the hull. Models witti hulls of large lengthobeam ratios may have low hydraulic stability by the resulting porpoising.
Models on floats are seaplanes. Floats should be spacei at the same distance the wheels were located, but farther anead, because the resitance of the floats is hifher than the rolling reeitarce of the wheels. They should be desiened to curry the aiditional torque load of the irive.

LANDING GEAR. The landing gear is designed to take the landing shock of a model, to prevent damage to the propeller, to stop turnover by the torque of the drive, to hinder ground loops and to place tha model into a position of easy take-off.

To take the shock of landing the mininum sinking speed must be known in order to estimate the minimum energy to be absorbed. Also a certain load factor, or safety factor should be assumed for occasional steeper landings. A load factor of 5 to 6 seems a good figure, because load tests on wings gave 36 times the total weight of the modela. Part of the kinetic energy is abgorbed by the deflection of the integral units of the model and by the flexible support of batteries and radio equipments. Some fuselages are so close to the ground that only the deflection of the tires can be usef for absorbing the shock. The front wheel in a tricycle design should have a greater travel than that of the rear wheels.

The energy to be absorbed by the shock unit is equal half the diatance the c.g. will travel times the maximum load. A metal landing gear will return the same energy to the model, which may bounce it into the air. If the shock is taken by rubber about 40 per cent of the energy is dissipated. An ideal shock absorber is a hydraulic shock strut controlled by valves and orfices.

The distance of the propeller from the ground should be at leasi 2 inches in the deflected position of the landing gear. The torque of high speed gas engines cannot upset models with standard wheel spacings. The high initial torque of rubber driven models means ground looping. This is avoided by setting the thrustline at a high angle with the ground in order to be aided by the thrust for a faster take-off. A good launchinc without pughing iepents on the experience of the contestant.

Groundlooping, circling on the ground is often caused by a poor aligment of the tail skid or by the tail wheel. It may be also the result of unequal loads on the wheels caused by the torque or the drive, by a soft ground or by small diameters and widthe of the tires. Other causes are the relative position of the wheels ahead of the c.g. and the tread of the wheels. The spacing of the wheels is determined by the height of the c.e. and from the span of the wing. A single front-wheel is offset to the left.

The angle of incidence with the ground depends on the basic design of the model. Many airplanes in the beginning of aviation could not take off because the landing gear prevented the increase of the angle of attack or high grass became entangled with the wire bracing of the gear.

To reduce the drag of the landing gear the struts are streamlined or made of flat dural stock. Cowling balloon tires decreases the drag but should be used only on hard, smooth takeoff grounds. Magnesium disk wheels reduce air drag, rolling resigtance and weight, which may be final cause for top performances in a loai carrying contest.

VOLUME $L \times W \times D \times .72$ FOR ABOVE DESIGN $L_{\text {NV. }}=2.88 \sqrt[3]{W o z}$. DESIGH FRONT REAR FLOATI LOAD $70 \% 15 \%$ EACH FLOAT 2 I LOAD 38% EACH 24%

DESIGM3TO 5 TIMES LOAD
TH. 488 SIMILARTO H-22

VIPERBOTOM THRUSTLINE PARALLEL

 Nuw NAMASS FOR LONGL STABILITY BEFOREPLANING

FLOATS OFGOOO DESIGMY =GO DERORISEIEO-22
 $9^{\circ} \sim C D=41 \quad C L=2.54$ $\angle D=6.25$
BEAMLOADIMG: $O Z / 1 N=.7 \mathrm{OZ} / 1005 Q .1 \%$.

FLAT $=7$-9 BOAT. $85 S P$ IPER ZEROLIFTLINES $8 \frac{1}{2}$ TO 912° TAIL 35-40\% WINGAREA TAILDISTAHCE 4 CHORD

> THRUSTLINE PARALL TO

TAM THIH CLARKY
WING CLARKY
LIME $12^{-1} 5^{\circ}$ WTH DECK
LOWAHGULAR SETTIVG OF WMG
HULL:TH 464 TH 791 FLOATSTOPREVENTLROSS-CHIHEFLOW.
LANDING GEAR.

GAAPHICMETHOD FOAMAX. THRUST FROM BHP/RPM. DIAGRAM.
NETHP = EFF \times BHP, MAXEFF $~ V / R P M . D$ mar. STAMDARD EQUATION $D=B H P^{1 / 4} /\left(R P M^{1 / 2} V^{1 / 4}\right)$ NETHP $¥ V^{5 / 2}$ BHP $3 / 4 /$ RPM $^{1 / 2} \sim V$ - COHSTANT AMD SQUARED HETHPBHP 3 ²/2/RPM. MAX BHP/2/RPM. TANGENT DRAWH TO DIAGITAM PLOTTED ON $3 / 2$ fower SCALE

FLAPPING WINGS- ORNITHOPTERS. The movement of a bird wing was used for the first successful flying model. Even the first mancarrying gliders had the outline of a bird. Complicated mechanism to imitate the automatic changes of the incidence angle and airfoil sections never produced valuable informations on the aerodynamics of flapting wings, because all changes of angles, airfoils, streading and closing of the tip feathers are inherent $2 y$ actuated by the direction and strength of the relative airflow; the bird loea nothing about it. Mounted birds placed into wind tunnels gave a gliding angle of only 1 to 4.5 , and the actual gliding angle of flying birds is more than 10 times the dead bird. Airfoil sections of a bird wire give only laminury (?) ficw and any poasitle turbulent flow is made laminary by nature to grow feathers at the right place, $3 s$ seen on egrets and pelicens. Thers two theories to be formulatel for the presence of the thumb feather (aluta) and for the scalloped trailing edze of a bird.
In 1901 Marey took movies of bird flights and attachad inatruments to pigeons to measure the power required for flying. He dil not obtain the ninimum power or the actual elisins aikste of iirds. Some of the resulte are siven in the diagrans shown. The best information were collected by movies taken of a large rubber band driven motel and from wind tunrel tests of a smill ging oscillating at high speed. The pictures exve the speed, the $2 n_{b}$ iea aoseured from the outline of the ribs and the pover by the rubher used. A twin ornithopter tested in 1912 exve an appirent CL of 1.56 but only a Elidirig angle of 1.32 . The tests indicated that the lift is done by the irner section of the wing and the propelling by the outer section.. Also that the boiy dues not nove into the opposite to the direction of that of the wing, but is 90 degrees off phise. This phase difference reduces the atrain on the muscles of the biris.

The tip of the insect wine describes figure of cights with varying tracks in order to move a graater mas = of air. Its principle is similar to tho acticn of a tird wing, excopt the wing has a Ereater axial rotation, which is tue to the centrifuctil force. Zodels with wings degcriving eights and rotating suout their litaral axes gave very hien lift. Tha weight of the mechunism will be too hativy for efficient flyine avtela.

Kany other ideas were tested with wines moving in a horizontal or ir a vertical plane. Oreat sums were wasted 50 years aso to bulli an afrplane by oscillating upturnet oups up and down. Oscil2iting wings back and forth gave a lift as estimited with etandard equations. Friction ind wight always precludes construction of efficient foodels with oscillating wings. Oscillatirig solit wing about their 25 per cent lateral axes gave no effect at all. To be offective a wing must have a double goticn. It must move xp and fown, and rotate about it? lateral axis, which may be actuatel by its innerent flexibility. Testa showed that the oscillating plane should be 20 degrees ahead of the vertical and that the maximin flap angle should be 100 degrees. The duration of ruther Ariven ornithoptars is less than 50 fer cent of propeller driven modele.
Ting are usually flapped by it crankshaft and connecting rods. A tensicner will not increase duration; it may however improve efficiency if the number of atrands sre reduced. To eliminate oscillaticn of the fuselage twin wings were tried; they increased the apparent CL to 1.56 tut the eliding was reduced to 1.32.

VIBRATIONS. Many kinds of vibration are possible on models. They are greatly dampened by the extensive use of balsa. Vibrations may be caused by poorly balanced engines, propellers or by the vorticea in the wake of the downwash. A single cylinder engine cannot be balanced. A great deal of reduction of the vibrations can be achieved by making the piston as light as possible and by balancing the crankshaft with a portion of the weights of the connecting ro: and rne piston.

Another unit that causes vibrations is the propeller. The gyroscopic couple of a two-blader in circling flight is sinosoidal, whish become smoother with three-bladers, which however have lower efficiencies. A hand-sanded propeller is often unbalanced by weight by an unequal thrust. This unequal thrust is present with any propeller flying in a circle. $1 / 2000 \mathrm{oz}$. on the tip of a 10 in . propeller gives a 2 oz . centrifugal force running at 15,000 r.p.m. For top performances propellers should be checked for weight balance and for equal pitch distribution on both blades. Engines should be tested mounted in the model to make certain that it will run with the same r.p.m. with the same propeller as tested on the bench.

Another vibration may occur by the resonance of the matural frequency of the blade with tine r.p.m. of the angine. To-iay propellers have at least twice the natural frequency of the r.p.m. of the engina. Some propellers manufactured years ago had very thin hub sections whioh gave a frequency of 15,000. The natural frequency of an average wing is about 2500 to 3000, which is too low for resonance. The only lime wings may be damaged by flutter is in power dive3. Usually the loss of a wing is due to weak rubber bands or shift of the wing on the support.

Flutter may occur with statically unbalancei elevators or rullers if the control rods have play in their connections. A reight and an aerotynamic balance will remedy this situation to a certain iegree. An unbalanced propeller or engine can cause to flip the escapement and the relay.

Vibration lock or reaonance of a long fuel line nay stop the flow or it nay even drain the whole line. Lons lines should be fastened to prevent resonance.

The turbulent air leaving the trailing edge may start a resonance in very thin tail surfaces. The vortices have a frequency of the speed divided by four times the thickness of the wing. An 8 in . wing moving at 30 f.p.sec. Give vortices pulsating at 9000 times per minute, which may be close to the natural frequencies of a thin stab. The frequancies of an average stab is much higher and placing it into the Nake may not start any vibrations, but an zdded slipstream of the propeller, which is also pulsating may reach the frequency of the stabilizer.

Basic equations are given for vibration of beams of uniform crosssection supported on one end.

AVER.

BUZZARD AEF. E.J.MAREYI873

TIP FEATHERS
BIRDS
A.R. SPAH LBS/SQFT.

BUZZARD 6.55 .45 FT 1.06 ALBATROSS 18.512 .5 " 3.12 GULL $11.14 .1=1.03$

Pelican 8.1 9.2"1.36
HEROM 7 5.45*.82 POD.AVLA. $/ 935$ T. 1 H.

TEST OFFLAPPING WINGS
SIMGLE: $C_{L}=1.45 \mathrm{~L} / \mathrm{D} 2.72$
TWIN: $C_{L}=1.5 \mathrm{G}$ LO 1.32 TESTED 1912 RJH.

OSCILLATING HOLLOW
CUPS.
Russia 1900 EMPTY WEIGHT 60 SQ.IT. 200Z. DURATION IN SECOMDS

$$
=15 \sim 30 \frac{\mathrm{~W}_{R} A^{1 / 2}}{W_{T}{ }^{3 / 2}}
$$

AIMSQ.ITI., WIH OZ.
PEFERENCES:
HÜCHEMAMM, WEBET

HIGH LIFT. PGORMECHI VETAILS, VIBRATIOMS

Not Balarteo: C.F.OZ. $=W_{O Z . ~ D I S T I H ~}^{\text {R.P.M }}{ }^{2}$ EHGITE OFPROPELLET

RESOHANCE:
STRONG WINGS ITRPESOMAMCE WITH EMGINE RUMNIMG 2500-5000 RPM.

FLUTTER:
WIMGS IM POWER DIVE MAY FLUTTER. TOO WEAK TUBBER BAMDS PES.VIBR. T.M. 957 MAYSTOPORREVERSE
FLOW OF FUEL.
PESOMANTVIBRATIOH OF PROPELLERS.
REG.PROPS AT 34,00ORPM.
OLDERDESIGMS W.THINSHANHS
EQUATIOM FOR FREQUENCY AT 15,000 RAMM.
HARD LAMDIHG WITH PEBOUHD WIMG BREANS

$$
f_{R}=a_{n} \sqrt{\frac{E \cdot I_{32.2}}{W \cdot L^{4}}}
$$

$a_{n}=22.4$

$$
a_{n}=61.7
$$

73

ROTATING WINGS. The lifting power of rotating wings, cylinders and other objects was demonstrated with models driven by rubber, steam and gas engines. Some rotate the lifting unit about their horizontal axes and others about their vertical axes. With certain arrangements all models lifting by rotation about any axis can glide by self-rotation, auto rotation. The big problem is always stability and how to overcome the gyroscopic precession and the counter torque.
Various ideas were tried, such as levitaion by centrifugal force, accelerating downward the boundary layer of a cup rotating at high speed. The closest to success came the cyclogirc. By that time the autogiro made its first flight, which was soon followed by powering the rotor, the helicopter.

Helicopter models driven by rubber bands are flown since 1880. Most rubber driven models fly up straight without any forward velocity. Lately however gas driven models are adjusted for forward flight, with an added autogiro trif. for landings without damage to the model. This combination may be instrumental for a new spot landing contest.

Hellcopter models use extensively balsa wood with rotors of solid balsa or tissue covered. Indoor models usully have microfilm covered rotors. Indoor helicopters obtain half of their duration by hovering about half of the diameter above the ground. The height of the room has little influence on the duration because a small prong on the top rotor protects the rotor from touching the ceiling.
Helicopters with a single rotor must have a drag plate placed on a rod or at the tail of the fuselage in order to slow down counter rotation. The loss is about 5 to 10 per cent of the power. Similar reacticns are obtained on flying saucers by using the surface friction of the large lenticular kodies. In order to balance precesaional forces the angular moment of inertias of the propellers and the rotating bodies must be the same. The slipstream of the rotor blasting on an inclined surface attached to the fuselage is not sufficient to balance the torque. Three $1 / 7$ to $1 / 10$ cambered surfaces however will do the work if the rotor has a low pitch setting and a low solidy. Model helicopters have seldom adjustable tail rotors.

To eliminate counter-torque rotors are driven by placing power drives on outriggers or on the tips of the rotor blades. One design uses powier jets, which works very well; another design has propellers to pull the rotor around. If both rotate in the same direction the precessions are balanced, the gyro forces however are not eliminated.

The location of the c.g. depends on the pitch setting, the gyro forces of the rotor or rotors and the location of the air resultant of the fuselage, usually slightly behind the rotor axis.

Propellers of gas driven helicopters run at 15,000 r.p.m. and the rotors at $600 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , which will balance the precessional moments if the weights are just right. A tail rotor can correct the difference of the torque and counter torque.

The forward speed is induced by the slipstream blowing on an inclined surface placed on each side of the fuselage. The axis of the rotor slopes slightly to the side in order to balance the eccentric resultant of the advancing blade.

Helicopter designers suggest hinging the propeller and the rotor. Some models have hinqed propellers but no hinged rotors. A pitching hinge at the 35 per cent chord distance and the c. B. of the blade at the 25 per cent of the chord distance gives automatic pitch adjustment for flying and autorotation. One design has two fixed blades and two hinged for pitch adjustment for flyinf at high r.p.m. and autorotating at low r.p.m., controlled by a weight placed ahead of the blades. The pitch for flying should be about 9 degrees and for autorotation zero or negative. Some helicopter models control the pitch by the coning angle, which is the resultant of the centrifugal force and the lift moments. The hinge at the hub should be about 35 degrees measured forward in the direction of the tip of the blade. The total width of the blades should not be over 30 per cent of the diameter. Coning angle improves stability; placing however both rotors below the c.g. will give automatic stability, because they become pusher propellers, which are stable.

HELICOPTERTESTS

2 Blades 5 Ft Dia. . 80 In WIDTH.

$\underset{C O=, 0407 \text { AIR BLADES:SECTIONN.A.C.A. } 0012}{ }$

RI.H. 1950 . 3 BLADES
HELICOPTETT: TORQUEFOR ZEROLIFT $=$ WIOTH $\times C D \times R P M D^{2} D^{4} / 49 \times 10^{6}$
HP $=$ WIDTH C.O RPM ${ }^{3} D / 2.6 \times 10^{10}$ FT-LB SYSTEM

FOP HELI COPTERESTIMATE - 9° BLADE SETTIMG~ LIFTIM OUNCES $=$ DIA, ${ }^{3} \times$ R.P.M ${ }^{2} \times$ TOTAL WIOTHIM $\frac{3.14}{10^{\prime 1}}$ DRAGAT $3 / 4 R \cdot \frac{L}{6 \cdot 3}$ ORESTIMATE LIft OF TOTALATEA AT VELOCITV AT $3 / 4$ RADIUS, $C L=.55$ $\angle D=6.3$ TORQUE AT $3 / 4$ RAD. LIFT $\angle B S=A_{\text {SQ.FT }} V^{2} \times .0012 \times .55$ $V=.75 R \times G .28 \times R . P . M / 60 \quad$ FT.LB. $5 Y 5 T$.

HELICOPTERS IMDOOR NO SPECIFI'H. OFIITHOPTERS" " " "
AUTOGIROS VANE AREA) WINGAREA

OUTDOOR
"
$W_{T}=10 \mathrm{z}$. Mis.
$W_{T}=10 z \cdot M 1 / N$
SAM'ME FOR OUTDOOR $W_{T}=$ loz MIN.

Rotatimg Wing

R.H. 2000 $C L=.2 C D-.2$ $L / D=1.0$ CL $=$ HIGH R.N
$C L=.59 C D=.525$

$L / D=1.12$

SAUONIOUS
$C L=.86 C D=.64$

$$
40=1.34
$$

AIrRiEsultant if Rorop ONADUAHCIHG
HELICOPTER
G8"DIA-21/2 WIDE 2 BLADES
9O ANGLE OOI SECTION
250RPM-1.1 LIFT. 25 LBFFTORQUE

$c_{0} / c_{L}=V_{\text {simmimg }} / V_{\text {potat }}$.
75

$.05 \mathrm{Cu} .1 \mathrm{~m} .40^{\prime \prime} 01 \mathrm{~A}$. Wr 50 az .
25% STAB.
ROTOR $\angle 1 D=5 C L=.10$
3 BLADES ~ 10% WIOTH
$L=C_{L} \mathrm{~F}_{2} r^{2} \pi \pi^{2}$
FEATHERING BLADE W. SHEWED HIHGE.

HELICOPTER
STATIC MAX.THRUST/BHPALSO APPLICABLETOPROPELLERS.
 R.PM. SPECIEIED
$C T^{5 / 4 / C P ~}=7^{514} n^{1 / 2} / \rho^{1 / 4 P}$
OIA $=$ SPECIFIED

ECCENTPIC
TOCOMTROL DIRECTION

CYCLOGIRO

THRUST $=10.4 D^{2 / 3} \times H P^{2 / 3}$
$\sigma=$ SOLIDITY= $\frac{\sigma \times n}{.785 D}$
उ-WIDTH, $n=H U M B E R$ OF BLNDES.
 $C_{T} 3 / 2 / C D=T^{3 / 2} / \rho^{1 / 2} D P$ FOR CLARKY
$21 / 2^{\circ} 0$

$$
\text { 2-3 WUDG } \begin{gathered}
\text { PULEYTODRIVE } \\
\text { D }
\end{gathered}
$$ 2-3"WIDG

PULLEYTODRIVE
TAILROTOR WITHAD-
IUSTABLE BLADES 2-3"WIDG
PULLEYTODRIVE
TAILROTOR WITHAD-
IUSTABLE BLADES

$C_{T}=\frac{38.9 T H}{D^{4}\left(\frac{R P m}{100}\right)^{2}}$
$C_{Q}=\frac{77.8 Q}{D^{5}\left(\frac{R P M}{100}\right)^{2}}$ $E F F=C T^{3 / 2} / 2 C_{Q}$
OR ZERO LIFT $₹=C Q_{0}=\frac{\text { CDMIIN } \times \text { WIDTH }}{3.14 D I A}$.05 cu Ni - PIVOT 36.30 "OIA. $\mathrm{O} / 4,000 \mathrm{RPM}$

STOP
fORR
AUTOGIR
FOR CG. AUC.
14 CTR OFTOPQUE

$H P=\frac{0430 T^{3 / 3}}{D}+\frac{D^{4} \text {. }}{26} \cdot C D\left(\frac{P P D M}{1000}\right)^{\text {t }}=$ $\omega=$ WIOTH OF BLADE

THRUST $=2.5 D^{2 / 3} 1 P^{2 / 3}$ THIMOZ, DIAIN INCHES DURATION $=35-48 \mathrm{~W}_{\text {R }} D / W_{T}^{3 / 2}$ WIN OZ, D DIA of ROTOR IN.

76

RUBBER. A motor made of rubber strands stores the highest torsional energy per unit weight. It will deliver as high as 55,000 in.oz. of work for each ounce of weight. The best coil epring will deliver only $25,000 \mathrm{in} . \mathrm{oz}$. of energy. Plotting the torque against the number of turns the curves indicate that the winding and the unwinding energy lines are not the same. The difference is called the hysteresis, a characteristic of rubber used in dampening shock and vitrations.

The maximum power is delivered if a rubber power motor is wound up to 80 to 86 per cent of the breaking point and the restoring time for the followirg winding is close to an hour. The winding is done under a steady tension, starting with 2 to 3 times of the original length of the motor and lubricated with a solution of liquid soap and glyeerin. A spring keeps the motor from bunching, which may upset the stability or damage the fuselage. This tehsioner is set to engage the shaft at a stop that allows the prop to fold at a predetermined position. The turns left unwound are not sufficient to keep the model in a horizontal flught.

RISER. The rising air increases the duration of a free-flight model. Risers or thermals are always present, especially over an open, level contest ground, usually increasing their speeds up to midday. Due to the rotation of the earth thermals move in a slow spiral to the right and consequently most of the models are adjusted for a glide to the left. Adjed factor influencing the flight is the strength of the wind, which has an upward slope in a warmifront and a downward slope in a cold front. The strength and the slope of the wind is not steady and theories could not supply proofs that dynamic soaring is possible by use of the variation of the strength of the wind.

A riser starts horizontally and increases its vertical velocity as it moves toward the center. This results in a curved air flow, a circular flow. A model reaching such an airflow will dip immediatly because the negative tail setting is reduced. This reduction moves the vectors of the resultants toward the trailing edge and the c.g. Will be at a lower angle of attack, which increases the gliding speed. Models that have low tail settings such as irdoor gliders may go into a dive, because there is no horizontal stability left. Sketches show vector diagrams for both conditions. If the tail setting is sufficient the model may keep within the riser, which is due to the higher air speeds on the periphery of the revolving air.

Risers are created by air moving over sloping terrain or hill. Models should be launched on or close to the edge of the hill, in order not to be blown into the region of the down-wind. Large gliders use thermals, cold fronts, ridges or even sea waves to reach rising thermals.

78

ENGINES. Engines used for models are of the two-stroke cycle system. The two cycle operates by creating a partial vacuum in the crankcase on the up-stroke of the piston; this draws in an air-gas rapor mixture through the side, through the hollow shaft, through a resr rotor valve or through a reed valve. In the upstroke the piston compresses the mixture, which is ignited by a spark, by a glow plug or by the high campression itself. The explosion drives the piston downward, compressinz the mixture in the crankoase. The exhaust ports open and after that the bypass opens, which allows the mixture to rush towari the top of the chamber. Some of the mixture may escape through the exhaust openings. The timing of a two-oycle engine is shown in a diagram, which varies with the ratio of the length of the connecting rod and the stroke. The higher the power output is the harler it is to start the engine. Usually starters are used on high compression engines.

The spark plug ignition allows a more flexible running than the glow plug or the compression ignition. The compression engine is called a diesel, which is a misnomer because the original DIPSEL is a four-stroke with a fuel ignition at the end of the up-stroke. The efficiency of a model engine is usually compared with its delivery of h.p. per cu.in. displacement. The thermal efficiency is baset on the power output (heat power-B.T.U.) of the fuel. The indicated efficiency is the work done by the explosion pressure on the piston area and the volumetric efficiency is based on the volume of the mixture is the chamber. The volumetric efficiency depends on the scavenging of the exhtust gases and may be assumed to be the h.p. output per cu.in. displacement. Its maximum may be $3 s$ high as 66 per oent and the h.p. equal to 1.2 to 2 times the cu.in. displacement. Deducting the h.p. delivered at the end of the shaft from the indicated h.p. the mechanicsi power losses are obtained. Thase are usually friction losses. The indicated h.p. are calculated from the indicator diagram. The average pressure on the piston during the downstroke is from 40 to 80 p.s.i.

Inproving the power output should come under the heading "souping" up in engine. Some of the improvements may be incorporated in future engine designs. A soupei-up engine however may not stand up under steady power delivery and may be good for only one contest. These loctorei engines are usually carefully cowled to remove the adilitionsl heat passin through the cylinier walls. Spray bars are replaced by spray nozzles to reduce the drag of the intale. A very small hole frilled close to the jet should aid vaporization of fuel by the adied air bubbles. Baffle plates on pistons follow uniform curves. Smoothenize all passages, removing all rageed eiges left foom machining, tapering slots on cylinder sleeves, enlarging intake passages, increasing the compression ratio by turning down cylinder and crankaase, Replacing flat gaskets by smill round eskets will reduce blowouts.or omit gaskets.

The average crankshaft is poorly balanced, whish is partly due to the manufacturing costs involved. Rejucing vibrations by balancing the crankshaft will adt power to engines mounted in models. Old-timers in the auto business suggest that the crankshaft of a single engine should bilance with the end of the con roi and with about $1 / 7$ to $1 / 2$ of the reminder of the con rod and the piston pliced on the crink pin. The crink pin is made hollow and solder is adfad to the lower end of the count re weicht. No perfect balancing is possible with a single cylinder engine.

Cowling an engine not only reduces the drag but also dissipates the heat generated by a high compression engine. The sides of the engine are tapered, the cooling fins are filed to a sharp taper. A very close cowl will force the air over the fin surfaces and to prevent air to escape at the plug the opening is filled with sponge rubber and only the plug point is accessible. Thus the slight vibrations will not damage the engine or the fuselage. The hot air leaves the fuselage with the aid of the centrifugal force. The exhaust stack is cut on a bias so that the gases pass into the direction of the flight. The hot air leaving the fins should not be used for intake, because the power of a gas engine increases with cooler air. A special screened opening is provided close to the venturi for fresh air. The spinner for the prop should not be over 25 per cent of the diameter. All these improvenents may ruin a few good engines before the correct doctoring is found.

Testing engines for h.p. is made on a torque stand shown in a sketch. The engine is bolted to a swinging support, which has a weight sliding on a horizontal rod. The engine is balanced and the attached propeller run at full throttle, the weight moved on the rod until the running encine is again balanced. The distance the weight was moved, the weight and the r.p.m. are used in estimating the h.p. Varying the diameters and the pitch of the propellers many readings are obtained, which are plotted, the torque and the h.p. against the revolutions. The connecting lines must give smooth curves to prove that the results are acceptable. The revolutions are measured with a reliable tachometer. A simple home-made instrument that uses the resonance effect at maximum amplitude, can be constructed with a $1 / 32$ in. wire sliding on a rod and calibrated with the dimensions estimated from the equation. This instrument may not be suitable above $17,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
The horse power outpui cannot be estimated from the design of a propeller and its r.p.m. A propeller should be kept for each engine, which will give a fixed r.p.m. if working correctly. A piece of $1 / 32$ in. wire fastened to the engine mount is trimmed until it vicrates with the maximum amplitude at the revolutions the best propeller should run.

The weight problem of the smooth running four stroke cycle may be lessened by the contest regulations that uses only 60 per cent of the displacement for estimating the power loading. A sketch shows how to hook up an engine operating with spark plug.

TUABULENTSECTIONS
FOR LOWR RM.
OEVELOMEDBY
PPOF.F.W.SCHMITZ

REF. AEROMOOELLI Ocr. 1954

EMGINES
 TQPP

IGN. COILS OPERATE AS HIGH AS 23,000 A.P.M.
DELIVER 7000 VOLTS 5 MILLIAMP DRAINI. 1 AMP - 2.9 VOLTS COMDENSERS USED .OZ MICROFARAD $B . H . P=1.3 \sim 2.00 \times C U .1 N \sim 12,000$ R.P.M TESTIHG FOR BHP WITH PROPS
 TESTSTAHD. ${ }^{-1}$ BH.P $\cong \frac{W \times D 15 . \times R P M}{1,000,000}$ FULLTHROTTLE WITH VARIOUS PROPS. CHANGEOFPOWER WITHALTITUDE $\stackrel{Q}{i}$

 OUTLET/1/4 IFREE $1 / 32^{\prime \prime}$ - - - |ll|l|||| EIN SPACE AREA WIRES H.WI BRASS COOLIHG 20 WIAES $17 / 8-21 / 8$ GASEHGIMES $L=1280 \sqrt{\frac{d}{R P M}}$ $L, d i r$.

NLETII/2 \times FREE FINSPACEAREA

FUEL CONSUMPTIONO VAPORLOCK: GASOLIHE 2OIH METHANE 2OIM BENZOL GOIN.

EFFECT OF/HTAME PIPE OH POWER OF ENGIME INLET AREA FOR TOOK 501 . ENGIMES OH SPEED JOBS EUIM/2 SQUM OUTLET CUIMI/

COMBUSTIOM

VELOCITIES 12-25FPS.
FLAME PROPAGATION GASOLIME 40 F.P.S. $8^{\prime \prime}$ DIA 3 FT.P.SEC. HO PROPAGATION 5/32TUBE-METHANOL + AITMIXTUAE.
COMBUSTIOHVELOCITY
TM G68.

FUEL MIXTURES: GLO FUEL: METHANOL 65%

 MITROMETHAME 2O\% CASTOA OLL 25%FORHOT WEATHER:
$758 \%, 28 \%, 13 \%$ RESP. 1% AMYLACETATE.

TORQUEDIAGRAM
FOUR-CYCLEEHGITE
SPECIFIC WEIGHT: METHYALCOHOL . 78 GASOLITE OIL
.69
 METHANOL 40% CASTOROIL 20% DIESEL FUEL:ETHER 30% GASOLIHE 38% CASTOR OIL 30\% AMYL HITP 2\%

[^0]GEMERALDESIGM DATA:
STROKE BORE RATIO.90-1.14
COH.ROD STROKE RATIO $=1.90$
EXHAUST/CU.1H $=.98$
INTAKE/CUINN $=.10$
BYPASS $/ C U . I H=.39$

FUEL COHSUMPTIOH:
FOR STUNTS $1.45-1.70 \mathrm{oz} / \mathrm{cu} / \mathrm{M} / \mathrm{MIN}$.

B.T.U-HEATINGVALUE P.LB.

HYDROGEN 60,640
METHYL ALCOHOL 10, 260
ETHYLALCOHOL 13,160
KEROSEME 20,500
BEMZINE 18,160
MAX. THERMAL EFFICIEHCY
GAS EMGIHES $22 \% \omega I T H$ PROPS 12% JET ENGIHES 1% TO 2%

Hoar-UP FOR /GMITION TWO SPEED COMTROL
 OPERQTED BYA TUMALVE OH BYA FELAY + IHSULAT -ED CONTROL LINES H.P REQUIRED
 IF CO IS HNOWH BEST/F ZEFOTHIGUST H.P. $=D_{F}^{4}$ WIOTH CD $\left(\frac{R P M}{1000}\right)^{3} / 12.8$ TORQUE $=D_{\text {FE. }}^{4}$ WIOTHCD $\left(\frac{R P M}{1000}\right)^{2} / 244$ IF FUELLINEISLONGREDUCE VENTURY (IHTAKE) APEA. (PLUG TESTRICTOR)

THREADS +HEX OH PLUGS $1 / 4,-32$ HEX $5 / 16-3 / 8,3 / e-24,1 / 2$ THREADS ONSHAFTS $6-32,8-32,3 / 16-32$
$1 / 4-28,5 / 16-243 / 8-20$

TETS- The principle of jets is the accelerated ejection of gases at high spe?ds. The higher the scceleration the lower the efficiency of the power unit. The low efficiency of a jet cannot be compared to the higher efficiency of a propeller drive, which gives a low acceleration to a great mass of air. The ejection of ignited air-gas mixture is incorporated in the pulse jet and the ram jet. Ram jets will work only if the ram pressure of the air reaches a certain height, this requires a velocity out of reach of model speeds. A two-pound ramjet gave a 2 ounce thrust at the stand-3till, which is too low for operation.

The pulse jet is the only jet available for steady high speed operation of models. Its principle is based on the resonant vibration of the inlet valve with the frequancy of the gas column in the attached t ube. The frequency of the ignited gas column is equal to the speed of sound divided by twice the length of the tube. The length of the tube is made longer than the valve oscillations would calculate in order to have the flame front not too close to the valves. The speed of the ejected gases is about $3000 \mathrm{ft} \cdot \mathrm{p} . \mathrm{sec}$. which indicates that the speed of a model will reduce the thrust of the jet only slightly. This great difference of the ejected gases and the speed of the model gives the pulse jet a 1 to 2 per cent efficiency which is low compared with the efficiency of a gas engine driven propeller of 12 per cent of the B.T.U. supplied by the fuel.
A combination of a gas engine driven blower with an attached tube for the jet effect will give a very low thrust at higher speeds. Such blowers are effective for helicopter designs based on the ducted fan priciple. Many useful equations for basic thermal relation of fuel and velocity are given.

A pulse jet with a 3.5 pound static thrust traveling at 200 ft . per sec. delivers 1.8 net horse power. Pulse jets are only used for speed and in cities they are not favored by club members due to the occasional anti-noise law enforcement.

Rockets, selfoontalned jets do not need the outside air for operation. The CO2 capsules use the expansion of the carbon iioxide in the eteel cylinders. Slow burning gun powder jets (Jetex) are liehter than the CO2 cylinders. The speed of the exhaust gases are from 1200 to $1400 \mathrm{ft} . \mathrm{p} . \mathrm{sec}$. A few notes on powder jets are given.
The design of jet models is based on the thrust and the weight of the unit. The area of the wing is 40 to $45 \mathrm{sq.in}$. to one ounce of thrust and the total weight 3 to 4 times the thrust. For highly streamlined models the ratio is increased. The airfoil section is a medium cambered section, because of the absence of torque and propeller forces. The dihedral is from 6 to 8 degrees. The thrustline should pass below the c.E., adjusted for a climb to the right and a glide to the left. The adjustment is made by an aluminum rudier is the stream of the jetblast. For straight climb the thrustline is slightly below the c.g. Slow spiral climb will be the best. Twin fins are used in case the jet is above the fuselage. Sufficient fuselage area is placed below the c.g. in order to eliminate violent stability recovery. In all stability problems the recovery force should pass close to the c.g.

TESTING. Simple aerodynamic tests can be conducted by gliding a model and measuring the heights at two points and the distance between the two pints. These three dimensions will give only the gliding angle. If the time of the glide between the two points is taken, the gliding speed, the sinking speed and the zerodynamic coefficients can be evaluated. A more scientific method is to glide the model in front of a camera and taking two exposures on the same film. The camera on a tripod, a dark background and a plumbline simplifies the procedure. The time 13 measured by the ticking of a watch which is fives times a second. Knowing the length of the model, the area and the weight all aerodynamic coefficients can be obtained. Changing the weight and the location of the c.g. the coefficients for other angles can be determined. The advantage of this kind of tests is that the model flies in an undisturbed air, which a wind tunnel cannot supply. These glide tests may eliminate poor designs and may show the direction in which improvements can be made. A good practice for junior aero engineers.

Balsa propellers can be tested by pulling a carriage by a rubber driven propeller up on an inclined wire for about 60 feet and stopping the propeller at the top. The drag of the carriage is obtained by loading it with two different weights and timing their down travels. Two equations will give the rolling and air coefficients, which are used to deduct the drag from the thrust of the test results. The torque values of the unwinding motors are plotted first. A certain number of turns are given to the motor and the whole unit allowed to climb to the top and the time measured with a stop-watch. The power delivered by the propeller is the weight of the unit, times the height it traveled in unit time. The energy used by the propeller is the number of turns, times the average torque, times 6.28 and less the energy used to overcome the drag of the carriage. The efficiency of the propeller is then the energy delivered divided by the energy used.

Tests conducted by this method in 1930 showed that the highest efficiency was obtained by 1.3 pitch-diameter ratio balsa propellers. The number of tests were over 2000. This method can be improved by placing flashers on two points of the wire.
To test materials for bending strength, rectansular or round strips of the material is fastened on one end and the other end is loaded up to the breaking point. By substituting the max. load and the dimensions for the terms in the equation the bending stress (modolus of rupture) is found in lb.p.sq.in. (psi). Many other simple tests can be made if the limits of measuring dimensions and loads are known. Mcst of these simple tests give only comparative results and not coefficients which could be used in standard equations.

> FUSELAGE EVALUATEO FROM R+M ${ }^{*} / 12 \sim$ TEST 40 F.R.REC. $L=24^{\prime \prime}$
> SQUARE
> Chass Section CD=. 133
> $10^{\circ} C D=.208$
> $d C L / d a=.042$
> SIDEAREA CO $=.0202$ $10^{\circ} \mathrm{CD}=.0314$ $d C L /$ d $a=.00635$
> AOUND
> CPOSS SECTION CO $=.109$
> $10^{\circ} \mathrm{CD}=.142$
> $d C L / d a=.0178$
> SIOEAREA CO $=.0173$
> $10^{\circ} \mathrm{CD}=.0224$
> $\alpha c L / d a=.00227$

84

STRENGTH OF MATERIAL. A material used in model building is balsa wood. It is easily shaped and glued with any kind of cement. Its weight varies from $4 \frac{1}{2}$ to 20 lb . per cu.ft. and even higher. The lighter balsa is used for indoor glider wings, leading efges and details where dimensions or stresses are not specific. Fuselage stringers, spars or thin control surfaces use 8 yo $9 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$. balsa. Comparing balsa with spruce or bass wood shows that basswood is superior to balsa in construction of beams and longerons; The digadvantages are poor glue joints obtained in fast work. Balsa with a weight of 13 lb. ou.ft. will have the same structural weight as bascwood. Basswood should be double slued. First coat ed with a thin surface, which is allowed to dry; then glued again and pressed together. Lately hardwood is specified for many structures with limited dimensions.

By removing all moisture from wood the strength increases by 50 per cent, but will stabilize to about 15 per cent moisture contents. There may be a method to prevent the moisture from returning without increasing the weight. Treating wood with chemicals will add only weight. Impregnating however the wood with resin and compressing it increases the strength with the same ratio as the weight increases. The adied advantages are a smooth surface and a very high shear strength.

Steel wire is used for control lines. Usually the steel has a SAE 1045 specification with a $140,000 \mathrm{lb}$.per sq.in. strength. Other steel wire go as high as 250,000 p.s.i. Many modelers use such wire if only a pull test is specified. This kind of wire comes in coils and should be relieved by heating it to 350 degree F. for one hour. Steel wire landing gears are used on most of the models. Steel wire will bend by its own weight to a certain distance if supported on one end. If the same length is used the defleotion will give the diameter without the use of a miorometer.

Aluminum alloys are used for engiens, landing geras, bell cranks wheel hubs, spinners and for parts that must have a hijh strengthweight ratio. Heat treated they may go is high as 90,000 p.s.i. The specific weight is $1 / 3$ of that of steel.

Bending tests on wints gave the breaking poads as high as 40 times the total weight of the modsl. This high strength may not be neccessary, but the adiitional torsional forces may justify the construction. The covering adds about 20 per cent to the bending strength and 80 per cent to the torsional strength. The shrinking of the tissue prestresses the structure by 2 to 5 pounds per inch run. This stress will suport a load of 2 to 3 times the weight of the molel without noticeable deflection.

Data for strength of material for models are given on page 85 .

BALSA
 STEEL DIAIN 1/1000

Quarter Sawed STIFF, FOR PIBS,
COMTROLSUPFACES BEMOS EASY ANNULAR FOR FORMIMG RINGS ROUNO BODIES PROPERTIES (A.S.T.M) 5-15 $\angle B / C U . F T$
COMP \perp GRAIN $46-75$ PS. $/$ $=" 450\left(.56 \% /\right.$ CU.FT $\left.^{-1}\right)$ BEAM: IBEMOING PS. $1 N$. $=1800(.30 \mathrm{P} /$ CU.FT -1$)$

SPRUCE $=128 \angle B$ BRLSA BASSI2.5LB.BALSA
COLUMNSTRENGTH USE COMPRESSION = TO GRAIN THICKHESSTO LEMGTH NOT OVER 1:16
UNDER COMPRESSIOM BASS WILLBELIGHTEP THAM BALSA. THE DIMEHSIONS MAY BE TOO SmALL. BASSWOOD , 4OSP.GRAU. BEHDIHG $8600 \mathrm{LB} / \mathrm{SQ} . I H$ COMP. /I 3300 " " " " 1

$$
530 \text { " " }
$$

SPRUCE 40 SP. GRAV BEHDIMG 9400 P.S.I. COMPII 5000"*" " 1 BLRCH 750 "" " " BEHDIHG $14,000 \mathrm{P} .5 .1$ COMP // 9500 * " 1 ToGRaIr 1340 " PLYWOOO MAX P.S.1. OF WOOD.

PLAITY

QUARTER

IMPREGMATION:
STRENGTH IMCREASE 12% WEIGHT " 120% COMPRESSEDTO 33% STMEHGTH JHCR. 265% SHEAFITCR. 150%
 $\begin{array}{llllllllll}2.2 & 6.5 & 12 & 20 & 28 & 3950\end{array}$

$D E F L_{I H}=L^{2} / 1800$ DIA.
WIREINTENSION
$\angle O A D=(d / 1000)^{2} \times .20$
SHAFT DIA. FOA RUBBER $D_{1 A_{1 N}}=.012 \mathrm{~N}^{1 / 2}$ $M=$ NUMBER OF $1 / 8 \times 1 / 30$ STRANDS OR EQUIV'T.

TEG.WIRE S.A.E 1045 140,000 $\angle B S / 50.1 H$ PIAHOIMUSIC WITPE SAE1095,225,000-350,000 T/SSUE
$\angle 1 G H T=/$ COAT . $48 \angle B / / H$ ADD 1.6° FOR EACH COAT HEAVY $=1$ COAT $19 \mathrm{LB} / 1 \mathrm{M}$ ADD $1.9^{\text {H }}$ FOR EACH COAT MICROFILM 2.5 PAAT COLLODIOH 1.5AMYLACETATE 1.0 CASTOR OIL

STAENGTHOFWINGS:

FRAME WITH COVER 20% STRONGERTHAM FRAME WITHOLT COVER. COATEDTISSUE 2000-7000 P.5.1.
CROSS-SECTIOMAL AREA.

SCALE
013345678

FLATSTOCH FOR L. GEAR WIDTH $=\frac{\angle O A D O Z L I N}{T H H_{I H}^{2} 16,000}$ EXAMPLE 180 O, TH 3/32" WIOTH112, L4 $5^{\prime \prime}$ 18 oZ, TH $1 / 1 G^{\prime \prime}$ WIDTH $3 / 4$ L $21 / 2^{\prime \prime}$ TAPER OVERI" WIDTH DEFLECTIOH $=L^{2} / 105 T^{2}$
ALUM. ALLOYS:
175T. 62,000 P.51.20\% 245768,000 P5.
AVERAGE CEMENT-
TENSION 2000
SHEAR 1000
FOLLING RESISTANCE = WEIGHT. OIOTO 015

LOCKED WHEELS

=WE/GHTX. 5 rol. 5
DURAL: 1.6 oZ.cU.IH.
BRASS: $2.245 \mathrm{oz} " "$ MAGMESIUM: 1.0402"" DIA OF WIRE $d=.01 \mathrm{~N}_{1 / \mathrm{s}^{1 / 2}}$ BALSA PROPHUB青 $h=.07 \mathrm{~N}_{1 / 2}^{1 / 2}$ CELL.ACET-CELL. ACETBUTYR. SPEC.GRAK 1.37
TEM.STR. 3000-9900 PSI.
COMP. 7500-30,400... SOFTENS $140-250^{\circ} \mathrm{F}$. ELONG. 5-48\% MOD.OFELAS $=2.0-3.5 \times 1 O^{5}$ RESIN/MPREGHATED ANO COMPRE SED WOOD PRESSURE 500TO/500PSSI. SHEAFINCTEASEO 7 TIMES

HOWTOFIND RESULTANTOF Two FORCES

Forces given by Directionand Magnitude INAMY SCALE.
 OUNCES

86

WEIGHT ESTIMATE. The weight of a finished model should be known in orden to come within the regulation of a contest. Except for indoor models no itemized data are available. The modeler should know the expected weight of each component unit, because the requirements are only for minimum weight and maximum wing area. The weight of each part and its location about an axis will soon be realized by modelers as a decisive factor for top performances. Indoor microfilm covere models are the most trying to build because each part must have a minimum weight within $1 / 10,000 \mathrm{oz}$. to come close $t \mathrm{c}$ the record time of duration.

The total weight of a radio model may be the only design that can be estimated from the units that do not add strength to the structure. These units are the radio equipment and the power plant. The total weight is found by multiplying the sum of the units by 2. In the future the constant will be reduced by closer stress estimate.

A few charts give distribution of the total weights of typical designs. Usually the weight of the wing is determined first. Three nomograms give the expected weights of wings for gas, rubber and indoor models. Another nomogram is for estimating the weights of regular wood or compressed wood gas propellers. Data are given for estimating the weight of light or heavy tiesue and for each doping. The weight of engines is estimated from the displacements, and the weight of a rubber motor is found by a nomogram from the length and the number of strands of $1 / 8$ or its equivalent.
A nomogram gives the weight of 36 inch long balsa strips if the specific weight per cu.ft. of the balsa is known. It also gives the weight of metal blocks of a volume less than one cubic inch. Weights are given for control lines, telescoping aluminum and brass tubing with $1 / 64 \mathrm{in}$. (.015) wall thickness. For modelers Who own sentive soales the weights of coins are given in grains. $437 \frac{7}{2}$ grains make one ouncs.

The weight of a $7 / 8$ in. diameter solid rubber wheel is 15 oz . and a $2-3 / 8$ in. diameter wheel weighs 1 oz . One 2 in . semi-pneumatic wheel weighs , 70 oz , and a 3 in . diameter weighs 2 oz . Streamlined wheels weigh less.
One 1.25 in . diameter plastic spinner weighs .30 oz .

FORFIMDING AMEAS OF IRTEGULAR SHAPES

Alpea of Cut Out is
EQUAL TO THE LENGTH OFSTPIPORSTRIPS IF WIDTHISI".

87
EQUATION FOR 36 IN LENGTHS W PCU.FT=3.00 WOz/AREA SQ.IN×TH. $W /$ CUFT $=1728 W_{L B} / W_{I O T H} \times T H \times$ LEHGTH W/eu.FT: 108 Woz/WIOTH \times TH \times LENGTH
PUBBER SPEC.WEIGHT. $50 \mathrm{oz} / \mathrm{cU} .1 \mathrm{H}$ 640 FT $1 / 8 \times 1 / 30$. 320 FT $1 / 4 \times 1 / 30$ PER POUND
40 FT $\sim 1 / 8 \times 1 / 30,20$ FT $1 / 4 \times 1 / 30$ PER OUNCE
WEIGHTIN OZ $=L_{I M} N_{1 / B} / 480$ STEEL WIRE P. FTINOI. $1 / 8^{\prime \prime}-125=.672$
$3 / 32.0937=.38,5 / 64.785=.2602$
$1 / 16.0625=.168,055 \equiv 129$,
$3 / 64.047=.094$ oz. $1 / 32.031=04202$.
tissue
LIGHTTISSUE.O280Z/100SQ.IIY E-10 EACHCOAT + .OI4 OZ/1005.I. HEAVYTISSUE. $062502 / 100$ SQ.IN. EACH COAT + .O87 OZ/1OOSQ.IH. WING GAS ud=A3/2/1740 AR<B
 WING MICROFILM $W=A^{1 / 2} \times .0009$
 WING: RUBBER $\quad \omega=A^{1.41 / 2000}$

215 SQ.IN. WEIGHT2.2oz. BAK'g LOAOI2LBS.
DEFLECT. $20^{\prime \prime} / \angle B$.

PAOP DIAMETER $\omega=.004 D^{2}$ | $5 \quad \phi \quad 7 \quad 8 \quad 9 \quad 10 / 1$ |
| :--- |
| 1ϕ |
| 1 |

DIA.TUBE $1 / 16 \quad 3 / 32 \quad 1 / 8 \quad 5 / 32 \quad 3 / 16 \quad 1 / 321 / 4 \quad 9 / 32$
ALUMINUM . 0036.00560076 .0096 .011 .013 .0156 .0175
BAASS .O11.017.023.029.035.041.047.053
PEA IN. TELESCOPIHG, WALL.O15 APPROX.

LIME CONTROL WIRE FOR TWO LINES
DIA. . 006 . 000 . 010.012 .014 . 016
$\begin{array}{lllllll}52 \text { FT } & .162 & .29 & .453 & .65 & .89 & 1.16\end{array}$ $\begin{array}{lllllllll}70 \text { FT } & .218 & .39 & .610 & .875 & 1.2 & 1.50\end{array}$ $W_{O Z}=d^{2} L_{\text {FT }} .000087 d_{\text {IH }}^{1000}$ IN, 2 WIRES

FORRUEBEA
ESTIMATE

SILM $/$ LIGNT $)=.040 \mathrm{OZ} / 100 \mathrm{SO} / \mathrm{IM}$.
WEIGHT OF ENGINE 22.5 CU .1 H. COIL: 1.2-2.50Z CONDENSER:.50Z GAS

OUTDOOR POWER RANT 28% RUBBER
WUNGE 22% USEAGE 45% WING $22 "$ WSELAGE 24
STAB+FIN $12 "$ WAIL STAB+FIN 12" TAIL 1 " 1 "
FUSELAGE $38^{\prime \prime}$ PROP +HQSE 22"" IHDOOR MAXRUBBER TUBBER WEIGHTEMPTY STICK 24 FUSE 34 NEW USAKEFIELD WIMG34 ~ 28 SAMEAS TAIL $12 \sim 13$ ABOUE. PROP $30 \sim 25$
WEIGHT PER CU.IH ~ DURAL 1.6 OZ. STEEL 4.650 oz , BRASS 4.850 oz ., LEAD 6.150Z FUEL . 415 oz WATER 576 OZ.
WEIGHT OF GASTANKS
1.5 TO 2.0 OZ. PER FLUID OUNCE

WEIGHT OF BATTERIES
GSozTOL.350z P. CU.IM. OF BATT. PAMK, 10 TO. 30 OZ WITH MOUNTIIG
FLYIMGBOAT: WT $=100$ HULL $=28 \%$, FLOATS 5% EHG. 35%, WIHG 23% TAIL 9%
TIMER: 25-. 60 OZ .
$31 / 2^{\prime \prime}$ DIAWHEEL 2.75 OZ. HOLDS 10 TO20 \# TOW LIHE:WIHG 48% SPINMER DURAL $11 / 4$ "DIA~. 30 oz , $11 / 2$ "~ 50 OZ FUSELAGE 36% STAB+FIM 16% WITH PLATE, SHAFT. COMPRES S ED AIPTAHK $3^{\prime \prime}$ DIA $\times 24 \mathrm{LG}-140$ " SQIN $/ 50 \mathrm{Z}$, $1 / 8^{\prime \prime}=.125,3 / 32^{\prime \prime}=.09375,5 / 64^{\prime \prime}=.078125,1 / 16^{\prime \prime}=.0625, .055,3 / 64^{\prime \prime}=.046875,1 / 32=.03 / 25$ COIN: CENT 50, DIME 40, NICHEL $80,25 \$ 100,50 \$ 200$, DOLLAR 400 INGRAINS

88

CONSTRUCTION DETAILS. Two pages, 90 and 91 , are covered with many construction details, which are mostly selfexplanatory. The designs of warp-free wings will be examined of their relation to the shrinkforces, beam distribution and to the airforce resultants. The shrinkforces developed by subsequent coatings are assumed to be evenly distributed over the outline of the airfoil section, with the resultant passing through the controid of the outline. Another characteristio of a wing to be considered is the flexural center or center of twist, which is a point on a wing, where a vertical force causes only vertical and parallel diaplacement of the structure without rotation.

In an ideal wing the resultant air forces pass through the a.c. which is also the flexural center and the centroid of the shrinking forces. This may be obtained with a symmetrical section by careful dimensioning the beams and looating them st the right places. To eliminate higher mathematics for determining the flexural center an approximation will give satisfactory answer if the center of balance of the cross-sectional areas of the beains is used in the estimate. To move the centroid of the shrink forces from its normal .42 position toward the leading edge, the covering and the coating is increased toward the leading edge. Due to the varying location of the c.p. on cambered sections the balance of the forces cannot be obtained. If the areas of the lateral members are closer to the top surface, the wing will warp downard; if the areas are ologer to the lower surface, the wing will warp upward. The hygroscopic characteristic of the coating varies the shrink force, which can be taken from 2 to 4 pounds for one inch width. The design of standari wings, which provides a 30 to 40 load factor, gives sufficient rigidity to all unisalanced forces against warping. Double glued joints are necessary for full strength of the construction.
Triangulation gives exceptional high strength-weight ratio and for very thin sections the thin beams may be made of basswood instead of balsa, except if made of $12 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$. balsa.
Ribs should be in line with the flight direction to reduce turbulency. Trailing edges should be notched and also gussetted if the sections are thin and the material is light weight balsa. The strength of such balsa is lower than that of the cement. The weakest connections are butt, jointed beams, and if made of light balsa the strength is only $1 / 3$ the strength of solid beams. For fuil strength use a two-strap construction or a lap joint of three times the thickness of the beam. The center section of the wing is uqually sheeted in order to distribute the holdiown forces exerted by the tension of the ruober bands.
The high torsional moments of spiraling models are carried over to the wio by the platform of a pylon job or by the top of the fuselage. The width of the platform should be it least half the chori length. To prevent shifting or misalignment the wing should be connected to the platform with key and channel or pega. If a dihedral break is at the center of the wins a close fit of platform and wint must be made, and the beam straps should be hard balsa or plywood.
Equation for estimating the number of $1 / 8$ rittber strands to hold down wings on plutforms or fuselages is given on page 28. Use twice the estimated number if only two pegs are used.

A fuselage is designed to carry the torque of the drive, its gyro forces, the stabilizing forces of the tail and the landing loada. The framed structure follows the design of a Howe trussing, the Warren trussing or a full balsa planking. Often a combination of the thres are used in one model. The Howe trussing carries vertical members and the torsional stresses are absorbed by the t issue covering, which makes it flexible. The Warren trussing has balsa diagonals, fully triangulated and tissue covered, which gives this kind of design a rigidity that may shatter in a bad landing. Planked fuselages are easily built, very strong for their neights and especially favored for models that do not require a minimum of cross sectional areas. Engine mounts should be of hardwood and the load distributed on two or more bulkheads. Solid fuselages used for control line models often split at the trailing edge of the wing, which is tue to the low cleavage strength of balsa. Reinforcing this portion of the fuselage or drilling a relief hole at the trailing edge will prevent splitting. Solid balsa wings, stabilizers or fins are used to save weight and for extra saving the doping is omitted (?). Sharp corners should be avoided, smoothened and tapered to diversify the horizontal shear, which is very low for balsa.

Sharp corners should be avoided. Smoothened ind tupere: connections will iistribute horizontal shear, which is very low for balsa.

BALSA SHEETIMGUSED

EASYTO BUILT BUT WARPS GFTEN

CEHTER OF ALL

C.GOR CEMTROID OF THE OUTLIME

HIGH STRENGTH-WEIGHT RATIO, WEAKLOCALLY. HARO TOBUILD.GOOD FOR LARGE WINGS.

DIAMOND HIGHRESISTANCE SETTIMG STAONGEP THAN TOBEHOING AGE OF TISSUE.
HOLDING WING TO FUSE WITHRUBBER BAMDS

FLEXURAL CENTER FORCE APPLIENIMFLXRAL

HIGH S/W RATIO.
TEMDS TO WASH-OUT TOWAROTIPS, WHICH AIDSIH MORE STABILITY BUT WASHOUT cannot be comtrolleo.

HIGHESTSTRUCTURAL

STREAMLINESECTIOMS EAS/EST TO BALANCE CENTROID,FLEXURALCTR+ c. P. OR SHEET COUERED
TOREDUCE LOCAL FAILURES

TIPRIESTHICKER AND BEST GLUE JOIHT POSSIBLE. EASYTOBUILD
WARPS DOWNWARD GOOD FOR THIHSECTIONS SAFETY TRIANGULATIOM
\qquad FORADUUSTING ANGLE PLUG-IHFOREASY TRAMSPORTATIOH A JOBFOR EXPERTS OHLY ITIF Not REIMFOACED PLUGATLEAST 3-TIMES ASLOHG
L/C:TOREOUCE DRAG, CON- THE BEAM. THECTION IHSIDE PROFILEL/C OF WING. REIMFORCIMG REQUIRED

HORIZONTALSHEAR AT THE THAILIHG EDGE STMESSCONCEHTRETION

CONSTRUCTION DETAILS 91

HIGH STREMGTH-WEIGHT RATIO.

RIGID, BUT SHATTERS ON HARD IMPACT

WARREN SPACING SAIME
TRUSS AS HOWETRUSS

51/32" SHEET HEAVIERFOR RADIOLARGER MODELS 4 LOHGEROMS FORGLUE JOITIT USUALLY 1/16×1/16 IF GRAIN LONGITUDINAL SUPPORTING STRUCTURE INSIDE.

FOR STRESS CALCUL. USEIOP.P. 100 SQ.IN ONSTAB.

GRAIHS RUN 2 BULKHEADS SPIRAL $\angle Y$ FORWINGMOUNT.
 IMTERMALSTRUCTURE NEEDED. EASYTO BUILT, FIGIO BUT HEAVY. DURAELETO SHOCHLANOIHGS, A MUST FOT PADIO/COH. MODELS. RADIO - GPAIN HORIZONTAL, SECOND SHEET GPAIT VERTICAL.

GAS MODELS: FUSELAGE DETAILS SAMEDESIGNASABOVE

LOMGERONS	$1 / 2 \mathrm{~A} \sim .09 \mathrm{Cu.IT}$.19CU.IH	. 29 cU.IN	. GOcuir
FORTRUSEED	1/16 - 1/16@-3/32	3/32	$1 / 8=$	3/16 =
DESIGNS				$1 / 8$ SHEET

 STRINGERS $1 / 16 \times 1 / 4$ HOTFLUSH WITH BULK HEADS. $1 / 16 \times 1 / 8$ $1 / 16 \times 1 / 1 / 6$

PLYWOOD, CELLULOID
OR SILK. TO TAFE HIGHTHRUSTANDTORQUE

RADIAL MOUMTED Glo GAS ENGINE

SPONGE

PIUGBER A EXHAUST COOLING

SHORTAS
$1 / 8$ SHEET BULKHEADS LAMOIMG GEAR.

EMGIMEMOUNTS MAYBE BUILT WITHTHEMEQUIPED THRUSTLIME OFF-SET.

92

DRAFTTNG BQUATIONS. Advancing scientific engineering is usually induced by formulating equations which conform to the laws of physics or by assuming a certain relation of design datails and performances. Plotting variables of models of the same design will generally result in empirical equations that will indicate the direction in which improvements may be made. Most equations have one or more constants that are obtained by substituting the variables of well performing molels. Systematic tests is the solution. In case the conception of the forces acting on the model is not recognized a few simple tests may clarify their actions. Substituting model components in equations used for airplane designs will result in equations that need only their conversion to the inch-ounce system and the establishing of the constants from top performing models. Performances aided by thermals should not be used.

The development of equations for rubber driven models is shown. The diametor is evolved from the equation used for airplane propellers with the assumption that the torque is equal to the moment one wing will give carrying the total weight of the model. The speed is presumed to be the one for the minimum power or the gliding speed at the minimum sinking speed. An equation for the minimum number of strands should be developed from the given area and weight of the model.

Many modelers observed the fact that the more rigid the wings were built the more they shattered at hard landings. The shock of any moving object is absorbed by the distance it travels times half of the maximum stress. The longer the distance a shock absorbing unit will travel the lower will be the stress imposed on the structure. Two beams of the same dinensions are compared for their shock absorbing qualities by subjecting them to the decelerated forces of their own weights. Applying standard equations only comparative values will be considered. The beam placed vertical is 4 times stronger than the one placel horizontal. The deflection of the vertical beam will be only $1 / 4$ of that of the horizontal beam. The kinetic energy absorbed by the beams is equal to the load multiplied by the deflection, which is the same for both beams. So this was a poor trial for comparing rigidity.

Some equations are developed by empirical methods. Taking variables that are assumed to be functional to each other and plotting them on logarithmic paper. If the line connecting the points is straight the equation for the variables is a simple power function expressed by the slope of the line. To eliminate mathematical operations the equations are replaced by nomograms. To simplify the construction of alignment charts the scales are made equidistant. Tive log soales will suffice for most of the charts to be made. See scales on paze 25.

93

DEVELOPING EqUATIONS FOA RUBBER DRIVENMODELS.

 MAXTURNS $/ 1 H=145 / \mathrm{N}^{1 / 2}$ POWER REQU. $=$ EFF REV.P $5 \times 6.28 \times$ TOPQUE $=W_{\text {OL }} V_{\text {SIMi }} 12$ REVRS $=394 \times W^{3 / 2} /\left(A^{1 / 2} \times N^{3 / 2}\right)$ DIA $=3000 \sqrt[4]{H P /(\text { REV.MIN }} \times \frac{2}{2}$ MPH $)$ USIHG C FOR ANYCONSTANT POWER/6.28RP.P.5 =TORQUE,DIA $=C \sqrt{T O R Q U E / R . P . S ~} \times V_{G L}$) $D I A=C A^{1 / 4} \cdot N^{3} / 4 / W^{1 / 2} \quad$ USE DIA. OF T FECORO MOOELS $C=1.15$ PITCH $=V G L^{* / 2} /$ R.P.S. BYSUBSTITUTION $P=2.82 \mathrm{~N}^{3 / 2} / W_{O Z}, P / D=2.5 \frac{\mathrm{~N}^{3}}{\mathrm{~W}^{2} A}$
CONSTANTS FOR PITCHANOP/DTOOHIGH,TOBE CORRECTED constants for Pitchano Plo toohigh, To be Corfrecteo.
Toestimate Noof Strandos: One Wing Shoulo Counterpact Torque TORQUE MAX.TORQUE $=.6 N^{3 / 2}=W \times$ SPAN $/ 4 \mathrm{~N}=.55 \mathrm{~W}^{2 / 3}$ SPAN $^{2 / 3}$

SUBSTITUTING MIMDIA DIA $=.635 A^{1 / 4} \times$ SPAM $1 / 2$
CONSTANT TO BE/NCREASED

ITVESTIGATIONOF LAMDING SHOCK

SAME ENERGY ABSORBED FOR BOTH POSITIONS.
 $W=8 \mathrm{H}, \mathrm{W}=8 \times \mathrm{CH} / 12=.61 \mathrm{CHORD}=\mathrm{WIDTH}$ CAH BE REDUCEDIF LOADISDISTRIBUTED BYPLANHING OR USE FULL WIDTHAT THE PLACE OFTHE BEAM.
~ EXAMPLE FORUSE OF LOG. PRPER~
1954 NATIONAL SPEEOCONTITOLLIME
1954 MATIOMAL
$1 / 2$ A 85.6
A 130.19
B 136.93
C 159.37
SPEED $=$ CU. $14 \div C$ $x=S \angle O P E 1 / 5=.2$
C AT CU. $1 \mathrm{~N}=1 \sim 174$ THEN SPEED $_{\text {MPH }}=174 \mathrm{cV} .1 \mathrm{NA}^{2}$ LIMEIMDICATES SPEED FOI $1 / 2 A$ SHOULD
PEACH 96 M.P.H. (?)

94

PROPELIER JACHINES. Lanufactured propellers advunced interest in airplane models. The first ones (1929) were machine-cut balsi propellers, folluwed by the machine-carved sas props. All plastic o: plastic impreenated, compressed wood propellers are reacy for uat without additional manufacturiny propeesses. Illustrations show basic principles uget in desianirg machine or fixturen for cutting or carving propellevg. Balsa props are cut with a bandsaw adjustable to a P / D ratio as $10 w$ as 1.2 . The jawa klade is narrow with a large teeth setting. The twist or pitch is Eenerated by an arm on the rieht side slidireg on a sloping bar. Thia bar is adjustable for pitch and iiametar. The thioknoss of the prop blank is controllei by a stop. The thichnese of the $t ; p$ is not $3 u f f i c i z n t$ to garve a cambered blade, which is ovsraoma by bluing a small piece of balsa to the lealiris elge. Wachine-cut basswoci props were tried but the cost of broken bandsan bludes ande the froduct numprofitable.

Go3 Tropa are manufacturet by a eertes of operations. Rectarblila! blanks with the shift holes drilled are shaped to their ouilines by a sirigle ilxture or fed to a half-ulutomatic carver. Then two cutters are used to Iinish the garving. A straight one for the flat gide and a profile outter for the top side. The profile cutter in a conbination of all the snapes of the inladic. The pilch is formed by the sides of a yox anto whion the blank is placed sind preased Fgilnot the ball beazings next to the gutber. A better design uses tho pitch bar eiailar to the arie used for cutions of balea props. Another mohine atis a silift of the carver to the rotation of the blarik for syecial prop iesif,ns. All carved propa are hini-3anded sati 3titic-balanced. Lacquering inill finish the protuct. Props ire checked for warp shd are kapt off tha market if pitch varies by 1 inca.

A diagrat eives the pitch-diameter vatio by placing the end of a prop bloci on tive chart ant the ine pasiang throigh the diagonal of the block is the ratic. Fo obtain the slopea of the otier atationa the radius of the prop is marked on a horizontal inne and a vertieal iravn at the acis. The slope obtained from the diagram ia drawn from the tip; it will intsrsset the vertical at a point that is usel to oonnect with any atation along the radils to gett the alope or the urgle at thit station. This metinud will give the same jitah at all station or a uniform pitah distribation.

ESTIMATING SIZE OF LEAOINGAMOTAAILING EOGES THAUE FLEXURAL CENTETAT $1 / 3$ CHORD DISTAMCE
ASSUMING EOGES REQUGED TOTPIANGULAR SECTIONS SAME WEIGHT BALSA, TENSION OF COUEITIMG HEGLECTED DEFLECTION PROPORTIONAL TO LOAO W DIVIDED BY I MOMENT OF IMEATIA OF SECTION. LOAD FROHT $2 / 3 \mathrm{~W}$, PEAR $1 / 3 \mathrm{~W} . T=6 \times 33 / 48$ FRONT BEAM $H=6656$ RIEAR BEAM $H=.256$ BOTH DEFLECTION EQUAL $\frac{2}{3} w \times 6 \times \cdot 665^{3} g / 48=1 / 3 \omega \times 6 \times 25^{3} \delta / 48 \quad 2 \times 6^{4} \times 295=6_{R}^{4} / 56$

> ~ADDITIOHTOMODELAERONAUTICS

PUBLISHED JUAE 1955 ~

I N OPOERTO ADVAMCE MODEL AERODEMAMICS, FIRSTA ATHEORY MUST BE FORMULATED, WHICH IS FOLLOWEDBY SYSTEMATIC EXPERIMENTS FOR UETIFICSTIOM. ALSO EQUATIOHS GIVENTOUSEIMDESIGHING MODELS.
COMPARING AIR-
FOILS FORSTEEP Climbing Gas Models.
THE DIAG RAM OHPAGEGO IS CORRECT FORCLIMBIMG ESTIMATE, WHICH INCLUDES THE WEIGHTOF THEMODEL.
DISREGARDINGTHE WEIGHT,
THE POWER REQUIRED IS
PROPORTIONAL TO THE CUBE OF THE SPEED ORTHESPEED PROPORTIONALTOTHE CD $1 / 3$.
THE SINHING SPEED/S FUNCTIONAL $C_{L}^{3 / 2 / C D}$ THE ACCOMPANYING DIAGRAM 15 PLOTTED ONA CL3/2 SCALE AND THETAHGENT TO THE CUITUE FROMTHE CDPDINT GIUESTHECOEFFICIENTS FORTHE LOWESTSINHIMG SPEED OR FORTHE MINIMGM POWER PEQUIPED FOR HORIZONTAL FLIGHT,SUCH ASFOR RIC MODELS.

ALWAISADDTHE PARASITE ORAG COEFFICIENT TO THE DRAG COEFR T OFTHE AIRFOIL.
THE CLIMBING FACTON IO PARASITE WILLBE I/(COMIN+CD CAR) I/S DARAG SOEFT'. AHO THE FACTOR FORA
SIMNING SPEED.CL $3 / 2 / C D$ DIUIDINGTHETWO FACTORS WILL BE IHOI CATIUE OF THE DURATIOH OF THE MODEL
$F_{\text {DUPI. }}=\frac{\text { CLIMBING SPEED }}{\text { SINKING SPEED }}$
$C^{3 / 2}$

1.5
9

THICHAESSRATIO $4 \% \quad 6 \% \quad 10 \% \quad 12 \%$ $\begin{array}{llllllll}\text { FORMIAPOWER.R/C } & 6.1 & 6.5 & 8.5 & & \text { 日.9 }\end{array}$ $\begin{array}{llllllll}\text { FOTSTEEPCLIMBIMG } & 15.8 & 16.5 & 18 & 21.2\end{array}$ FREEFLIGHT.

Above Does NotTake Into Considefation THE VABIATIOH OFVELOCITIES, WHICHIMFLUEMCETHE COEFFICIENTS AMÓ THEIMCPEASE OF WEIGHT WITH IHCAEASE OF THETHICKNESS

VTOL-VERTICAL TAKE-OFFAMD LANDING.USUALLY"TALLSITTERS" STOR-SHOAT TAHE-OFFAND LAMDIMG. USIHG SLIPSTAEAM.
OTOL - OBLIQUE TAWE-OFF AMD LAMDIHG.
TTOL TAHGENTIALTAKE-OFF AMDLAMDING. CLASSICAL 3-POINT LaMDING.
MOMENTOEWING $=W_{\text {OZ }} \times$ SPAN/m $^{\text {PAM }} / 8$ $\frac{W_{\text {OZ }} \times \text { SPAI } \times 2}{1 G \times 8}=\mathrm{NO}_{1 / 8} \times \mathrm{W}_{1 \text { OTHIN. }}$

~ MumberofrubberStmands 1/8x1/30 TO HOLDDOWN WING.~S
Many Gooo Mouels Disintegranted INTHEAIRORLOSTA COHTESTBECAUSE INSUFFICIEMT HUMBEROF STRANOS ALLOWED THE WING TO SHIFT ORLIFT FROMTHE SUPPORT. THETENSION OFTHE STRAMD STIMESTHE WIDTHOFTHEPLATFORM SHOULD BE EQUALTOTHEMOMEMTCREATED BYTHE VIOLENT MANEUVERING ANOTHE MASS ACCELERATIOM OFTHEMODEL. AS5UMINGTHAT THE MOMENT SHOULD BE TWICE THE STATICLIAD,ACTIMG IM ON ONE SIOE OHLY. $1 / 8{ }^{\prime \prime} \times 1 / 30$ ÓRUBBER $/ 60 \mathrm{O}$.

1) ZEPO-LIFT LINE SETTING OFWINGANOTAIL 2) LOCATION OF CG LONGITUDINALLY 3)LOCATION OF C.GIN PELATIONTOTHETHRUSTLINE 4) ZERO-LIFTLINE IM I9ELATIONTOTHE THRUSTLIHE. 5) DISTAIBUTION OF WEIGHTS 6) DIA ANO PITCH OF PRODELLER 7) CHECN ON SLIDSTPEAM TOAQUE ANO GYTOFORCES. HITS FOPPRODUCTION: SMALL VAMIATIOMS SHOULD NOT CHANGE FLYING
GLIDETESTMADEIV
CHARACTERISTICS.
1915 ~ SCHWEITZER (I.M.A.C)
GYRO MOMEMTS OF PROPS INDOOR TIPACTOR

GLIDERTESTED BYTHE
MISSISSIPPI STATE
COLLEGE BYGIL. HOFFMAN

RAD		10	25	50	75	100 Ft	
25	3.9	1.9	. 78	. 39	. 26	. 19	
- 50	15.5	7.8	3.1	1.55	1.03	. 78	PAGE
75	35	17.5	7	3.5	2.33	1.75	48.
100	62	31	12.4	6.2	4.1	3.1	54
150	140	70	28	14	9.3	7.0	
4200	249	124	49.6	25	16	12	

$C F=V^{2} /(32.2 T)$ PER UNIT WEIGGHT-MPH $=.682$ F.P.SEC.
COMPARING GYROMOML OHA CIRCIMG MODEL WITH THE S AME POWER, SPE ED AND CIRCLE DIAMETER,THE R.P.M. OF THE TWO ENGINES HOWEVER QREDIFFERENT.
THE EQUATION ONPAGE 48
SHOWS THAT THE G.M. 15 A
FUNCTION OF R.P.MXD 4 . THE EQUATIONFORDIA, ON PAGEIB GIUESTHE VARIATIONWITH 1/RPM1/2.

SUB STITUTIMG DIAIM

THE G.M. VALUE, THEN
$G . M=f(1 / P P M 2 \times P P M=F I / R P M$.
THISINDICATES THATTHE
HIGHERTHER.P.M.THELOWER
THE G.M. IF OHLYTHER.P.M
VARIES THE POWER WILLBE THE SAME.

EmpIRICAL METHODS
USEDIMAIRPLAME DESIGMS (1930) REDOC-EDTHEFUSEDIMENSIONIMGTOASSUMING A CERTAIN LOADPER
SQ FT. OH THE STABAIO SQ.FT. OH THESTABATIO RUDDER. IHELOADING FOAMODELS SHOULD DEPENO ONTHECATEGORY OFTHEDESIGN.

REF:BRUNOECK-1953. THETESTS IMDICATE THATTHICK AIRFOIL SECTIONS APEINEFFICIENTAT LOW SPEEOS (RIN.) WIPE WILLHELP BUTIT WILL MOT IMPROVETHIN CAMBERED SECTIONS.

FOA SIMPLE ESTIMATE OF CUMBING SPEED THE DIFFERENCE OFTHE AUAILABLE AHD THE REQUIPED H.P. DIFF. 15.02 HP .
CLIMBINGSPEED $=\frac{550 \text { RES. HP }}{\text { Wr }}$

$$
\begin{aligned}
& =\frac{550 \times \cdot 02}{4.2}=2.6 \text { F.P.SEC. } \\
& \text { OR } 156 \mathrm{FT} . \text { PEA MIN. }
\end{aligned}
$$

HOW EQUATIONFORDIA. $V=\sqrt{\frac{7560 W}{A C L}}$ or
OFRUBBERDRIVENPPOPS
HAS
$\sqrt{C L}$ HAS BEEM DEVELOPEO.-
EQUATION FOR DIA. ON PAGEIB $H P=\frac{W_{\times} V}{8800} \mathrm{CL} / C D=$

$D I A=3000 \sqrt{\frac{H P}{R P M^{2} \lambda V}}$

ALLCOMSTAHIS ARE OMITTED AMD OHLY FUHCTIOH(f) OF FACTORS INUOLVED ARECOHSIDERED. $H P=W_{T} \times D_{2}+V=f\left(\frac{W \times W^{1 / 2}}{A^{1 / 2}}\right)=f \frac{W^{3 / 2}}{A^{1 / 2}}$ ALSO HP=f(TORQUEXR.PS) TORQUE-F $\mathrm{H}^{3 / 2}$ (PAGE 77) $D_{1 n}=\sqrt[4]{\frac{\text { TORQUE }}{R P M \times V}}=f \sqrt[4]{\frac{T^{3} / 2 A / 2}{R P S \times W^{1 / 2}}}$ R.P. $=f\left(\frac{W^{3 / 2}}{A^{1 / 2} \|^{3 / 2}}\right)$ rHEH $D I A=f \sqrt[4]{\frac{a^{3 / 2} \times A^{1 / 2} A^{1 / 2} N^{1 / 2}}{W^{1 / 2} W^{3 / 2}}}$
$D_{1 A}=$ CONST. $\frac{N^{3} / 4 A^{1 / 4}}{W_{T}^{1 / 2}}$ SEEPAGIB
SIMPLIFIEOEQUATION FOR FIN AREA. -
EQUATIONGIUENONPAGE1OL CAMBE SIMPUFIED BY ASSUMINGTHAT FORTHE
SAME CATEGORY OF DESIGN, QW,ARFIN,ARWING TO BE FIXED. THENTHERTIO

SDAN×WIMGAREA
 FINAREA*DIS:TOFIVE POWERCURUE
 SHOULOBE

~PROP CALCULATION~

- O9 CUIH. MAY DELIUER . 11 BH.Pat 14.000 RPMM.TO PNEVEMT DEAD STOPIM LOODSTHE ENGITHE/S TUUAT 9300 P.P.M. DELIVERS.O8 B.HP THE SPEED 1535 F.PS. USING DIAGRRAM ON PAGE 2OTHEPROP WILL BE S"DIA, 3.2DO AHD 50% EFF.

> VELOCITY-

CHAHGE OF NETH.P.
WITH VARIATION/NSPEEL

FOR 550 Sq.in. 44 oz Total WeIGht

EXAMPLE:
LONG'L STABILITY ESTIMATE:
WING 640 5.I. G. 4 A.R.
STAB 2345.1 . 3.7 A.R.
36 PERCENT OF WING-
STABDISTFROM A.C 3.2 WT 320 Z. RUDDER 38.51 STAB EFF. $96,1-d \varepsilon / d \alpha=.80$ $C L \omega=.0725 \alpha, C L T=.060 \alpha$ ESTIMATE For. $65, .85$ C.G. CHOPDDIST. WINGAREA I.O, TAILAREA - 36, MODELTOBE FAIMMEO AT 15° RES.
FOR. 65 CG DIST., TAIL DISH 285 HIGH WIHG, LOW C G.CMAC= $=047$ ACAT. 30 C SEE PRGE ANG. $0 \quad 5^{\circ} 15^{\circ} 20^{\circ}$ $C M A C=047=047-047=047$ $-025620 \quad .128 .384 \cdot 512$ WING $-047+081+337+465$ TOHMOMEHT-.0445a +.0555ET TH/S MON TO BALANCE M $\omega+337$ AT 15° AOS. $337-667+0555=0$ SETT \& $667-337 / 1 / 055=6^{\circ}$
Stab~ $0^{\circ} \quad 5^{\circ} \quad 15^{\circ} \quad 20^{\circ}$.OS5SET . 330.330 .330 .330 $-04450 \frac{0}{+330}+\frac{222}{+108}-\frac{667}{-337}=-560$ ADDING WM T TM -
AHGLE O 5 $\omega_{M}=-.047+081+337+465$ $T_{m}=\frac{+330+108}{+283.189}-\frac{337}{0}=\frac{-560}{095}$

ESTIMATE FORCG. 85%

WINGA 0,515120
A.C. $-047-047-047-047$ $\angle 1 E T=0 \quad .200 \quad .600 .800$ TOTAL-047+153 +553+753 TOUL DIST $3.2=55=2-75$ TAIL-. 413 +05i'SETTIHG TOFINO SETTINGFORTPIMAT 15° $553-.0413 \times 15+.05 / \mathrm{SET}=0$ $553-.620+.031$ SET $=0$
$S E T=620-5531.051=1.310$ CMTAIL $=+.067=.0413 \alpha$ AHGLE 0,5 15 20 SETT +067+067+.067+067 $.0413 \alpha \quad 0-206-620=826$ TAR $+0 \in 7=139=553=759$ AODWING $=047+153+533+753$ TOTAL $+.020+.014 \theta=.006$ THE RESUL'T MMTCOEFT. ARE TOO LOW TO STABILIZETHE ERFECT OF PROR + FUSE TO BE COMSIOEREO FOR FREEFLIGHTGISMODEL. ITMAYGLIDE IH CNLM AIP BUTMAY SPIHIH A FASTTHERMAL.

COHSTAMT: ~ CONSTANTS FORFFGAS 46 "EFFUBBER 20
"TOWGUOER 30 .O9CU.IH. 9300 P.P.M. CLARKY AIRFOIL SECTION. TWE LIFTOFTHE TAIL MOT CONSIDERED.
USE COEFFICIENTSFOM CLARKYON
PAGE 7 AMO ADO PARASITE DRAG AHGLE $-2^{\circ} 00224 \quad 6 \quad 8 \quad 16$ THESLOPE OFTHE STABIL-

COEFF CO PAR $^{2} .05$ TO CD COEFFTS. $\begin{array}{lllllll}C L & .253 & 395.54 & .683 .828 & .97 & 1.25\end{array}$ $V-\begin{array}{llllll}487 & 39.2334 & 29.7 & 27 & 25 & 22\end{array}$ $C 10+C D_{P} .070 .074 .081 .092 .105 .123 .210$

$C L / C O \quad 3.6 \quad 5.35 \quad 6.657 .457 .97 .9 \quad 6.95$ HP $=.066 .035 .024 .019017 .015 .0 .15$

100

Equations For Altitude HEIGHT/NFEET $=H$ $H=32,000$ Log $\frac{\text { PPAVALIAOLE }}{\text { MPREQUIRED }}$ METH.PAVAIL $=31.000-.43 \mathrm{H}$ NETHPAEQU' 31,000T .57H PEQUIPED H.P. 15 MIN.H.P. FORHORIZONTAL FLIGHT-

AT LAHE FLYIHG ATITS MIN. HR AT VELOTIES, THAT AFE IMDIRECTLY PROPORTIOHALTO THE SQUARE ROOTS OF THE AIF DEN SITIES. THEPOWER OFINTERNAL COMBUSTION ENGINES $/ 5$ /HDIRECT PROPORTIONTOTHEAIR DEHSITY. COMBININGTHESE RELATIONS FOLLOWIHG EQUATIOHIS FORMULATED $\frac{\text { MnI METHP }}{\text { MIM NETHD }}=\left(\text { DENSITY GROUMD }{ }^{3} \text { (DENSITY ALTITUDE }\right)^{3 / 2}$ FROM WHICHTHE CEILIHG, VGLOCITIESAMDPOWER PEQUIRED ATANYALTITUDE

IE THE POWER CURUE AT ANY OTHER LEVEL 15 KNOWN.
THEANGLEOFATTACK DURING THE ESTIMATE DOES HOT VARY.
THE EQUATIONDOESHOT IHCLUDE THE EFFICIENCY OFTHE PRODELLER.

REF: : H.A.C.A T.R 368 (HOT G38AS GIVEN ON PAGE 2.)

Staticthrust/BhP FULL LIMES N.A.CA
WOOO PROPELLETSS BLADE WIOTH DIAlIO, Dotreolines Metal PITCHAT. 15 PF
$c_{T}{ }^{5} C_{p}=\frac{T 3 / 4}{B H P} \frac{n^{2}}{10^{2}}$
$3 / 2$ = PEV P SEC. SPECIFIEO $C_{T}^{3 / 2} / C P=$ THRUST $^{3 / 2} / B H B_{3} / 9 \times D_{1 A}$
DIA. SPECIFIED.

SUBSTITUTETHISDIAGRAM EQUATIOMG FOR THE OHES OH PRGE 75 .
EQUATIOM ONPAGE 62 $\frac{H^{1} \cdot A^{1 / 2}}{W^{3 / 2}}=\frac{C D}{C^{3 / 2} \frac{1}{10}}$ FT 1 S SYSTEM THE HP FT-LB SYSTEM.THE H.P ISTHE METH.P. DELIUERED BYTHE PROPELLER.
CONVERTIMGTHE EQUATION IT1TO THE OZ.-SQ.IM.SYGTEM $\frac{101 \mathrm{FlP}^{1 / 2}}{W^{3 / 2}}=\frac{C D}{C L^{3 / 2}}$
ASSUMING THAT THE H.P DELIVERED BYANEMGIME ISPROPORTIONAL TOTHE CUIM. DISPLAC EMENT. THE ACTUAL HP UAGIES FROM 1.2CU.IN TO 2.OOCU.IN. THE LO WETT VALUE SHOULD GE USED RADIO CONTROLLED MODELSUSE ABOUT 3/4 R.PM. of The pevolutions of Mar. POWERDELIVETY.THIS PAEUEHTS THEMODEL FROM FLYING OHGYROSCOPIC FORSES.
THEBASIC EQUATION WILL BE
CU.IN. $=C \times W^{3 / 2} / A^{1 / 2}, C$ A COHSTAM, WHICHVARIES WITH DESIGM.
OMPAGE 24 FOTT CARGOTHE COMSTAMTIS GIUENAS.006. USINGTHE 1955 CHAMDION CARGOMODEL: $A=600 \mathrm{~S} .1 \mathrm{H}$. $W_{T} 553 / 402.049$ cU.IN THECONSTAMT WILLBE.OO3.
THE ENE PGYSTORED IM FUBBES/S/M DIRECT PRODOPTIONTOTHE DURATION.
USIMGTHESPECIFICATIONS OFA RECORDIMDOORMODEL $W_{T}=.0686, W_{\text {RUB }}=0396$ AREA $=1485.1 N$ THE EQUATION WILLBE:
DURATION $=70 \frac{W_{R} \times A^{1 / 2}}{W^{3 / 2}}$ SEC.

LEVEL CAM BE CALCULATEO

9.6"DIA 5"PITCH PROPTESTED
ATGOTTINGEHLAB 1932.
A.P.M. $13,170 \cdot 10,490 \quad 8820 \quad 7430$ $\begin{array}{lllll}\text { Max.EFF } & 70.7 \% & 69.4 \% & 61 \% & 51 \% \\ \text { ATV/nD } & .49 & .48 & .46 & .45\end{array}$ $\begin{array}{llllll}\text { F.N AT } 75 \% \text { R } & 141,000 & 112,000 & 94,000 & 80,000\end{array}$

Stress Estimate of planting boxing.

HowTo Estimate The LOCATIONOFAHOTHER EMGIME IFTHE EMGIME ONSDOT/S EXCHAMGED, KEEPINGTHE SAME C.G.

THICNHESS $/ 16,7-8 L B . B A L S A$ 2000 LE.P.SQIN. PAGE 85. BENDIMG STMENGTH
MOM. $=$ WIOTH $\times T H \times H / 3 ~ L B . I N$. approx Max Mom. It Root OF WING.SPAH 60," $W_{T} 4.2$ pounos.
MOM $_{\text {MAX }}=W_{T} \times 5$ PAN $/ 8$
MOM $=4.2 \times 60 / 8=3 / .5 \mathrm{LB} .1 \mathrm{~m}$.
ASSUMINGTHAT 2/30ETME LOADIS CARRIED BY THEFRONTBEAMAND $1 / 3$ BYTHEREARBEAM AND A LOAD FACTOR WITHA MARGIN OF SAFETY TO BEIO THE MOMENT CARRIED BYTHE BOXING. MOM $=\frac{1}{3} W \times T H \times H \times L B S / \mathrm{s} . \mathrm{N}$. IE THE WIDTHIS NOT KNOWN THESLOPE H/W/S USEO FRONT BEAM H/W $=5$ REATP BEAM H/W=.35 MOM $=1 / 3 \omega_{x}+5 \omega=T H+2000$ MOM $_{R}=1 / 3 W_{*} 35 \omega \times T H \times 2000$

Front Beam M=10*21 $210=\frac{1}{3} \omega^{2} x \cdot 5 \times 1 / 16 \times 2000$ $\omega^{2}=10.08 \omega=3.18^{\mu}$ REAR BEAM $M \times 10 \times 10$ $W^{2}=3 \times 100 /(.351 / 16 \times 2000)$ $W^{2}=6.85, W=2.62^{\prime \prime}$
STRITGERS ADOED TO PREVENT CTINKLING THE LOAO FACTOA FOR STEEP CLIMBIMGEF. MOOELS SHOULDEE GREALLY IMCTEASED.

SEEPAGE 84 ON WITGGTESTS.

EFFECTIUE A.P. WITH EMDPLATES.

WITHOUT 3.54 A.R, WITH DISC EFF.A.R $=498$, WITHTRAPEZOIDAL EMOPLATES 4.50
WITHOUT 6.OOA.R. WITH DISC 7.8 WITHTPAPEZOIDAL GMDPLATES 6.8

DETHERMALIZER HOW SIMHING SPEEO WITH TAIL-UP/S COMPATTED: USE DIAGRAM FOR 360° OH PAGE 8 AND AOD CDPAR. 15 TOTHE CD COEFFICIENTS. FORSINKIMG SPEED SEEPAGE 65 $V_{S}=W^{1 / 2} / .0012 A^{1 / 2} \times\left(C D \cos ^{3 / 2} B / C L^{3 / 2}\right)$ FOR SMALLB GLIDING AHGLE$\cos 1 / 2 B \cong 1.00$

In GLIDE W BGLANCESR THEN $L=R \operatorname{COS} B$ ORT $C L / \cos B=C_{R}$ $C R=V_{L^{2}}+C_{D}^{2} \quad V_{S} \cong C D / C_{P_{p}^{3 / 2}}$
ANGLE $40^{\circ} 50^{\circ} 60^{\circ} 65^{\circ} 70^{\circ}$ $\begin{array}{llllll}C L & .8 & .72 & .60 & .50 .40\end{array}$ $C D \quad .75 \quad .85 .95 \quad 1.081 .15$

 $C_{1}^{3 / 2} \quad 1.3 / 51.3651 .41 .641 .78$ $V_{s}=f \frac{.90}{1.315} \frac{1.00}{1.36} \frac{1.10}{1.40} \frac{1.23}{164} \frac{1.30}{1.78}$
$=f .665 \quad 735.785 .750 .730$ THEHIGHROT KPLUE .785-OR60
 EQUATION FORAC. $C P=A C-C M_{0} / C L$ AMD COEF FOR O ${ }^{\circ}+10^{\circ}$? $42 \mathrm{O}=\mathrm{AC}-\mathrm{CH}_{0} \times 2.50$ $\begin{aligned}-(.310 & =A C-\left(M_{0} \times-925\right) \\ 11 O & =-\left(M_{0} \times 1.575\right.\end{aligned}$ $11 O=-C M_{0} \times 1.575$
$C M_{0}=-.710 / 1.575=.070$
$C M=-.710 / 1.575=-.070$
$420=-2.50 \times .070$ A.C. $C_{V}=1.25 \times .45 /(.56 \times 2.25)=.446$ $C_{L}=C V / S / H 30^{\circ}=.446 / .50 \times 892$ THE AR of THE STAB $3.6 \mathrm{CH} \mathrm{C}^{\circ} .0595$ -892\%.0595*15
DEDUCTING 15° FROM 57° GIVES
THEPOP-UG ANGLE Of 42°
EXAMPLE: BOX. 2005.1. THE SINKINGSPEED IS 13.5 F.RSK
$V_{S}=\sqrt{\frac{7550 \times 8 \operatorname{COS} B}{200 C_{L}}} \times$ SINB $=13.5$ F.P.S

c_{L}

TAM $B=C O / C 1=$
$110 / .60=1.835$ $B=61.4^{\circ}$

BOTTOM OF FUSELAGE,

AR-2.66 $C L / \alpha=.057$ STALLS AT 20°
$A R=/ .33$
$C L / \alpha=035$, STALLS AT30: WITH $1 / 2 \mathrm{CH}$ EHDPLATES CL $\alpha=.053$, STALLSAT 30. WITH FULLDISK ENOPLATES $C L / \alpha=.056,5$ TALLS AT 25: LARGE GAIMS ON LOW ASPECT RATIOS OMLY.

THE HEIGHT OF THEAVERA GE CHORD IHTHE ELEVATION ISTHE SUMOF THE ATEASTIMETHE HEGGTS OFTHE CG-SDIUIDED BY THETOTALAREA. ASSUMING A 14 OTIP DIHEDRALTHEHEIGHI EQUALS $\left(320 \times 0+450 \times 15 \sin / 4^{\circ}\right) / 770=2.1^{\prime \prime}$

AREA $738 C H O R D \times T H I C K$
$I_{1}=.0464 \mathrm{CHORD} \times$ THICK
$I_{2}=9464 \mathrm{CHORO} 3 \times T H 1 \mathrm{CH}^{3}$

$I_{2}={ }^{2} 464$ CHORD ${ }^{3}$ MEICT MEANAERODYMAMIC CHORD~

 DIST OFL.E O AV.CHORO $=(8.5-16.75 / 4)=4.33^{\prime \prime}$
 BELOW BASELIME USEO FOR PYLOH WIMG.
ANGLE O 5 IO 15 C.P. 404 . $357 \quad 338$. 34

FOR 30\% BELLOW BASE $.404=A . C .-C . M_{0} \times 2500$
$-\left(.338=A \cdot C-\mathrm{cmo}^{x}-925\right)$
$066=\theta-C M_{0} \times 1.575$ $C M_{0}=-066 / 1.575=-.042$ $A C=.404-.105=.299$ or $\sim .30$ Correctionfor AipFOIL CHARACTERISTICS GIUEN FORINFINITE ASPECTRATIO. H.A.C.A REPORTSAPE WITH $1 / 2 \mathrm{CH}$ EMDPLATES TWODIAGRPMS. $c L / \alpha=.062$,STALLSAT 18.3° EXAMPLE: CL=1.0 AT WITHFULLDISKENOPLATES 12°,TOBE CORRECTED $C L / Q=.0645$ STALLSAT 17° FOR AR $=6$.

THE IMOUCED AHGLE

 (SEE PAGE/4) $=18.24 \mathrm{CL}$$=18.24 \times 1 / 6=3.040$. WHICH 'S ADOEDTO 12° $12+3.04=15.040^{\circ}$ $C D=-02$ FOR INF.AR, WHICHISTHEPROFILE DRAG. CD $=C D_{0}+\frac{C L 2}{\pi x A R}$ CD $=.02+1 /$ TixG $=.073$, $C L^{2} / \pi A R$ IS THE INDUCEO DRAGCOEF'T. Ho Fillets.

UP-GUST
THE fiesultaint of a Circlihg MODELIS ASSUMEO TOPASS THPOUG THEPLAHE OF SYMMETPY

$$
\text { CR } \frac{1-R}{\text { THEOUTER }}
$$

FASTER THANTHE IMHER WING, WHICHHAS A LARGEK ANGLE OFATTACN.
FOR EXAMPLE:
THE VELOCITY OF THE OUTER WING 15 20F.P.S AND THE AHGLEOFATTACK 70, ANO THE VELOCITY OFTHE / NHEP WING 15 FPS AHD AH AHGLE OFATTACK 12.5. THE MODEL ENCOUNTERS A 2F.PSUP-GUST: THE AHGLE OHTHE DUTEP WITAG INCREASESBY $2 / 20$ OR 5.6° AMOTHE/HNEAWING BY $2 / 15$ OP 7.6° THE LIFT ONTHE INMERUIMG $7.6 / 12.5$ OR BY 61\%, OHTHE OUTEIGWING THEIH CPEASE 15 5.6/70 OR 80% THE MOOE WILL HCPEASEITS BANH, SIDE SLIO ANDIF STABLEIT WILL TUPN SLIGHTLYTOWARDS THE DISTUAGBAMCE.

~SWEEPBACK - MAX.
CL REDUCES $1 / 2 \%$ FOT EACH DEGPEE. CDMIN DECPEASES $B Y 1 \%$ FOATEACH DEGREE.
CLE

B.T.U.

SMOHELESS POWDER 2000
BLACK POWOET 1132
$\mathrm{C}+\mathrm{OTO}_{2} \mathrm{CO}_{2} \quad 3832$ $2 \mathrm{H}+\mathrm{O}_{3} \mathrm{To}_{0} \mathrm{H}_{2} \mathrm{O}=183,000$ 2H ATOMIC HYDROGEN
O_{3} MRIATOMICOXYGEN OZOHE UNSTABLE
STABILZERTO BEITVENTED
~FLYINGBOATS~
Stamdard Equation
USEO:
New FUnCTION OF FORE BODY LENGTH LANO BEAM (WIDTH) B IS USED IH EQUATION

$$
\frac{w}{64 L^{2} B}=.0836
$$

This riesults ImA LONG NAFROW HULL COMPAPED WITH THE EARLIEP BEAMY ONE.
FULLYFAIPEOSTER, LONGAFTER BODY, WHICHPREVENTS
PORPOISING
PEF: AEROPLANEI-G-1956 EQUATIONFOR FLYIHG BOAT MODELSTO BE FOAMULATED.

CONUERGENTDIVERGEHT TEF: AIR PICTORIAL. -DEC.1955:~

A BALAHCE FOR HORIZONTALFLIGHT/S OBTAIHED ATMINHP IFTHEC.G IS LOCATED FOR MINSINITING
C.G.LOCATION

WITHRELATIOHTOTHE
THRUSTLIME
FOR SLOW-CLIMBING
MODELS - R/C.
THREE POSITIONS: 1.) C.G.THROUGHTHE HRUSTLINE
THRUST DRAG

SPEEO. THEPE/S HOWIVER AN EXESS OFPOWERFFOIT TANE-OFFAMD CLIMB.
THIS REDUCESTUE ANGLEOF ATTACT. ADDINGA HOSE-UP UNTILTHE ANGEE OF ATTACK ISRESTORED. PARTOFTHE WEIGHT/S LIFTEO BYTHE THRUST. SCALE) MAINFORCES MEET AGAINATTHE C.G, IFTHE SLIPSTPEAMWILL MOT AFFECT STABILITY.
2)THEC.G IS BELOWTHE THRUSTLINE, WHICH
CREATES A DIUING
MOMENT THATGIUES A BALANCE ATAHOTHER

TOLLINGMOMENT DUETO SIDE SLIP
-DIHEDPAL 5°

$\begin{array}{lll}0 & 0 & 0 \\ 2 & a & 0 \\ 3 & 2 & 3 \\ 2 & 3 & 3 \\ 2 & 0 & 3 \\ 0 & 0 & 0 \\ i & 2 & 1\end{array}$
POLLING MOMENTOFFUSELAGE DUETOSIDE FORCE HO EXACTAHALYTICAL METHOO AVAILABLE. TESTS IMOICATEDTHE MOMENTS ARE SMALL IM COMPARISON TOTHE EFFECT OR WIMGDIHEDRAL. TO TOTHE EFFECT OK WIN $+1^{\circ} \mathrm{TO} 3^{\circ}$ WINGDIHEDRAL EFFECTNTO$-3{ }^{\circ}$ WINGDIHEDRAL.

3) THE CG 15 ABOUE THE THPUSTLINE. THIS

 CREATES ACLIMBINGMOMENT That Gives a Balance at a LARGER AHGLE.AS SHOWH ITH THE DIAGRAM.

BESTGLIOE AT 10° WITH THRUSTIT WIL BALANCE WITH THE AESULTANT OF 14 ?

- ERC.C. ~HIदнlVIMG .

SIDEFORCE

RCE THRUST AEPOOYHA
OOMMAS
 TOSCALE.

RPPM FORMAX.THRUST.-EXAMPLES FOR PAGE 69 B.HP + R.P.M.TATEN FROM AER MOD. B.H.P RP.P.M. DIA VIID EFF NET.HP. FACTORAIO TOWING $\begin{array}{lllllllll}.51 & 13,000 & 9.2 & -56 & 58 & 296 & 280\end{array}$ | .50 | 12,000 | 9.5 | 59 | .595 | .298 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 473 | 10.290 | | | | | $\begin{array}{llllllll}.473 & 11.000 & 9.85 & 62 & 61 & .288 & .292\end{array}$

DIA ESTIMATEO FOR 70 MPH. KE $B 35$ EQUATIONFORDIa $\left.=3600 \sqrt[4]{B H P /\left(A P M^{2} V\right.} V\right)$ FACTOR BHP $3 / 2 /$ RPM TO BE PEVISED. ALLEHMERCURY~ HET FACTOR B.H.D R.P. DIA V/TO EFF H.P $\times 10^{4}$ \begin{tabular}{lllll}
.26 \& 11.400 \& 9.86 \& .328 .45 \& $.1175^{-.116}$

.25 \& 10.000 \& 10.4 \& .355 \& .47 .1175

\hline 23.000 \& 125

.25 \& 10.000 \& 10.4 \& .355 \& .47

23 \& 9.000 \& 10.73 \& .383 .487 .112 \& .125

\hline
\end{tabular} 1225 $.21800011 .15 \quad 416.516 .1085 .12$ DIA. ESTIMATED FOR 35 M.P.H.

SAILPLAME R.J. 5
COMIN $=.0055$

CESSNA 120

 WING 2412 CDMIM $=.030-$ BELLAHCA CRUUISERPOWEPEDFLIGHT $C_{L}=0 \quad C D .04$ GLIOEW.COWL SEALEO.
$C D_{\text {MIN }}=.025$ $G L I O E: C L=1.0$ CD. 095 WITH POWER $C_{D}=.134$. COMOUCTEDBY RUGUSTRASPET

WEIGHT DISTRIBUTION FOR STABILITY. ~FREEFLIGMT-RADIOBANK AHGLE O"

 SEEPAGES: 55,56 57, 28

- MAXIMUMDURATIOH-

The VALUE/STHE MInimum OF CD/CL3/2
$C D=C D_{A R}+C D_{e}+C L^{2} / \pi A R$ $C D / C_{L}^{3 / 2}=\frac{C O_{P}+C D}{C, 7 / 2}+\frac{C L^{1 / 2}}{\pi A R}$
DIFFERENTIATING WEOETAIN THE MINIMUM $\frac{d C D}{d C L}=-\frac{3}{2} \frac{C D_{p} * C D}{C_{L} 5 / 2}+\frac{1}{2} \frac{C_{L}^{-1 / 2}}{\pi A A_{2}}=0$ $T_{H E N C O}^{P}+C D E=\frac{1}{3} \cdot \frac{C L}{}{ }^{2} A R$. THIS EQUATION/S USED ONLY IFTHE COPAR $+\mathrm{CD}_{\mathrm{C}}$ Is YERY Low. IT WIll Hor WORK FOR AH AVERAGE FREE FLIGHTMODEL
$C L=\sqrt{3\left(C D_{P}+C D_{e}\right) \pi \cdot A R}$
EXAMPLE: MODEL CDP $=.04$ $C D_{\text {MIN }}=03$ AR: 7
$C L=(3(03+.04) 3.14 \times 7)^{1 / 2}=2.15$ TOOHIGH. FOR HIGH SPEEDAIFPLANE $C D_{P}=.02, C D_{e}=.006 \quad A R=3$ $C_{L}=[3(.02+006) 3.14 \times 3)^{1 / 2}=, 86$ O.K.

LOOPINGOF PUDDER-ONLY R/C MODELS.
SOME FAOIO CONTROL
MODELS LOOP OHLY WITH THE WIHD (DOWN-WIND) AHD CAHNOT LOOPINTO WIND (UP-W/HO) THEREASON/STHATTHE THEIHCREASE OF LIFTCAMBE EFFECTED BY/MCREASIHG HE SPEED OR THEAHGLE OFATTACH. ONTHERUDDEROHLY MODELS THE AHGLE OFATTACH SHOULD IHCREASE

WIHD BLOWS ATAN

INA BANH, IETHE WEIGHTS APE DISTRIBUTED IN A CERTAIN WAY, WHICHGIUESTHEAXIS OF EA SIEST POTATIOMAN AHGULARPOSITIOM WITHTNETHRUST LINE. A GRAPHIC COMSTRUCTION AMALYZEDANDANEXAMPLE WILCLARIFY THEPROBLEM.(?)
/NCRERSE OFLIFT-SECB-1.

MODELISAIOED FROM ATOB DUETOTHEUPWARD DIPECTION OF THE WIND.

LOCATION OF FIN

 or R/C MODELS.

TOREDUCE THE SIDE FORICE RESULTIHG FROMTHE ROTATIOMAL SLIPSTREAMTHE FIHISLOCATEDAPPROXIMATELY WITH THE THRUST LIME PASSING THROUGH THE CEMTER OF FIMAREA.

FLAPPING WINGS

 G.T.WALHET/923ANGLE OF ATTACH DOWN IHMER MIDDLEOUTETR BEAT $12^{\circ} 12^{\circ} 12^{\circ}$

ANGLE OF $A X I S$ WITH $0^{\circ} \quad 5^{\circ} \quad 10^{\circ} \quad 15^{\circ}$
THAUSTHINE

1853	1851	1848
167	173	197
114	116	15
2238	2245	2261
4394	4410	$4 \frac{20}{1461}$

HAUSTLINE WIHG 1854 STAB 179 POWER PLANT 8
LAMDIMG GEAR 110 FUSELAGE 2245 BATT. FRADIO 15

TOTAL पया FOLLOWTHESAME PRINCIPLE

VALUES ESTIMATEO FOR OUHCESAND IHCNES
MIM, VALUEFOT 5°

DURATION ESTIMATE OEAN/MDOORMODEL
GLIOINGTESTS CONOUCTEO WITH AH INDOORMODEL (194OJGRUE ASINWING SPEED DF $6^{\prime \prime}$ PERSEC. AMD A GLIOING ANGLE OF 1:5. THE AREA WAS 147 SQIIN. A TOTAL WEIGHT -1375, THE WEIGHT OF THE RUBBER WAS .057502.
THE DURATIOM FOR IMDOOR MODELS, WITH MOI-FOLOING PROOS,IMSECOMOS IS $=70 \omega_{R} A^{1 / 2} / \omega_{1}^{3 / 2}$ IN Oz . ario 5ein. This Wovo give $20 \times 12.1 \times 0575 / .51=955$ SEC. THE BESTFIGHTWAS $73 G$ SEC. AMOTHEA METHOD FOP ESTIMATINGTHEDURATION/S THEPROD ENERGY CONTAHNED IN THE RUBBER DIUIDED THE EMERGY REQUIPED FOP CLIMBINGFLGHT. THERUBBERISWOUND 80% OF THE BPEAKING POINT, PROD EFT: 50%, THE CLIMBINGPOWET 15 TWICE THE SIHKIHGSPEED TIMESTHE WEIGHT OFIHEMODE DUR.IMSEC $=\frac{55,000 \times .80 \times 50}{2 \times 6 \times 1375}$ $2 \times 6 \times .1375$
P/OZ PUBBER 13,300 SEC FOR / OZ RUBBER OP $1330 \times .0575=765$ SEC
SEE AERONUTB ULLETIH MARCH 1940 PAGE3.

Duration Estimate OF A STEEP CLIMBING GASMODEL. (PAGEGO) 200 SQIIN. 049 CUIIN. WT $=50 \mathrm{Z}$ PARASITECOEFF IO (PAGEG) CLIN. 15 FOR LOWEST SIMK G SPEED. CDMIN (CORP' 0) =OZ SIMKIUG SNEEDDY Equation [PAGEGO] $V_{S}=W^{1 / 2} C D / A^{1 / 2} C C^{3 / 2,0012}$ =1.97F.P.S. THE OTHER EqUATION $V_{s}=1 / W_{o Z}^{1 / 2} / A^{1 / 2}$ 1,74FPS. THE OUS ENG. DELIVERS V. 05 HPTME PROPUSEDHADA $6^{\prime D}$ DIA 3"PITCH PID~ 50 SHOULD GIVE 50% EFF OP 025 METHGU CETHPIOZ $=.025 / 5=.005$ CDloz, P. 100 . $5.1=.12 / 2.5=.048$ USING DIAGTAM THE TWO VALUES WILL GIVEA CLIMEING SPEED OF 29 F.P.S. ENGINERUN 20 SEC SLTITUDE REACHED $=20 \times 29=580 \mathrm{FT}$. DURATIOM $58011.74+20$ $332+20=352=5 \mathrm{mlN}+52 \mathrm{sec}$, THE THEOPETICAL EQUATION DUR = RUN \times POWERAVAL/POWR. BECAUSETHE FLYIHG SPEED ISOMLY II. 5 FT. P. SEC AHDTHE EFF. OFTHE PROD WILLTEDUCE To 25%.
DUR $=20 \times \cdot 0125 / .001=250$ SEC. THE EQU.DUR $=20 \times 360 \times 049 A^{1 / 2}$ WILL GIVE 440 SEC. TOOHIGH. IDEAL SLOTS FOT BOUMDARYLAYERCOMTPOL.

INASKID. PAGE 48.

WIMG:
Assuming that The Prof: DRAGIS CONSTAMT/HA YAWED WING, THEINDUCED DRAG HOWEVER WILL DIFFER DUETO THE CHANGE IN THE AHGLES, OFTHELEFT AHD PIGHT WING CAUSEO BYTHE DIHEDRAL
$M_{O} M_{\omega}=A_{\omega} \dot{q} \frac{S_{P Q}}{4}\left[[\alpha+\Delta a]^{2}-[(\alpha-\Delta \alpha)]^{2}\right]$ $\frac{-039 A R^{1 / 3}}{\pi A P_{w}^{2}} \beta$
β SKidangle α nes. AHgLE
$\triangle a=D I H E O \times \beta / 57.3$ SEE
$M_{O M}=A_{F} q$ D15TF $.039 \mathrm{AR}_{F}^{1 / 3 / 3}$
COMBIHING THE TWO EQU'S
$A_{E}=\frac{\text { SPAN } \alpha_{W} \text { DIHED }}{}$
$\overline{A \omega}=\frac{\text { SISTF AR }}{F}{ }^{1 / 3} A R_{\omega}{ }^{1 / 3} \frac{1}{4750}$
ASSUMINGTHEAVER. EFF.
AR. OFA FIN IS 2.5 THE
EQUATIONUILLBE
$\frac{A F}{A w}=\frac{\text { SPAH }}{D_{1}} \cdot \frac{D_{1 H E P}}{A R_{3}} \frac{a_{w}}{645}$
EXAMPLES: RAOIO: $\alpha=15^{\circ}$
SXAMPLES: RAOIO: $\alpha=15{ }^{\circ}$ DIHEORAL 6 ; PROP DIA 9 " DISTP ${ }^{2}$ II. FUSE TPOSS SECI. $22^{\prime \prime}$ CGTOCP II $^{\prime \prime} \omega_{A}=500$ R/C D/L $=1 / 5$
WIHG:O219
PROP:0215 OR
FUSE:0136 5.7\%oF TOTALO57O WIHG
WAHEFIELD:
5PAH $48^{\prime \prime}$ APEA 200s. ARII. 5 DISTOFIN 23 DISTTO PROD 19 "CGTOCR 8 " FUSE CROSS-SECT. $9 \mathrm{~s} .1 .0 / 2 / 5$ OIHEDRAL $11 \circ \alpha_{\omega}=15^{\circ}$
FIMAREA OF WIHGAREA WIN'G . 0237 OR PPOP:.0340 9.5\% OF FUSE O385 WING

$.02 .04 .06 .08 \cdot 1.0 .12 \cdot 14.16$ $C D$ COEFFICIENTS BASED $\begin{array}{llllllllllllll}758 & 9 & 10 & 11 & 12\end{array}$
 OHTHE MAX.CROSS SECTIOM OF THE FUSELAGES.

PUDDER CALCULATION: CALCULATION OF FINAIPEA RESISTSEXACTHESS, BECAUSE THAEEIMTEGRAL PARTS:FINFUSELAGE ANO PROD ARE CALCULATED SEPARATELY. THEIRTOTAL WILLMOT BE EQUALIFTESTEDINA COMBINATION, BECAUSETHE AIA FLOWS FPOM OHE UHIT TOTHE OTHER

PRODELLEF:FOLLOWING MA.C.A TP 820 YAULEPIM

 A P = 8 PRO JECTED PROP AREA, AERODYMAMIC PRESS. CREATED BYTHETHRUST THEMOMENTACTIHGAT THETIP OF THE PROP.THEAEROOYMAMIE PRESS. 15 ESTIMATED BYTWETHRUST ONTHE DISCAAEA, AND THE THRUSTA FUHCTION OF THE WEIGHT= D/L DURING THEFLGHT.
USUALIY H5TO 1/7 DH GLIOERS MAY BE UPTO I/IO, 'BUTNO PROP. $\xrightarrow[A W]{\text { AFIM }} .056 \xrightarrow[\text { DISTPROP }]{\text { DISIA }} \frac{1}{A R^{1 / 3}}$ FOR $0 / L=1 / 7$ $\frac{A_{F I N}}{A W}=.040 \frac{D_{1 S T P}}{D^{\prime S T F}} \times \frac{1}{A R^{1 / 3}}$ ASSUMING AH AVE. EFF. AR FORTHE FIN TO BE 2.5 THE EQUATIONSTHENARE $\frac{A F}{A \omega}=.041 \frac{\text { DISTP }}{D 1 \text { ST FIN }} \sim 1 / 5$ $\frac{A E}{A \omega}=.029 \frac{D_{1 S T P}}{D_{1 S T} \text { ITF }^{\prime}}$ for $\frac{D}{L}=1 / 7$
DISTANCES IN/NCHES STOPPED PROP A FIN $=(1.16-.44 \%)$ APR.x $D_{1 S_{P}}$ Aw 2.25 ART $^{1 / 3}$ A $\omega^{2} D_{15 T_{F}}$ MO PROD EST. InFAST. CLIMB.
FUSELAGE: THEC.POF THE FUSELAGEFONCES IS ASSUMEDTOPASS THROUGH THE 25% OFTHE LENGTH. MOMENTSARE BASED ON THEMAX. CROSS-SECTIOH WHICH DOES HOTIHCLUDE THE PYLOH. THE C.P. OFA PYLOHISUSUALLYATTHE C.G.
 FOR.AV.RECTANG FUSE
UALUESFORAR1/3
$\begin{array}{lllllll}A R & \mid l l l l & 1.5 & 2 & 2.5 & 3 & 3.5\end{array}$ AR'/1 | 1.141 .261 .36 /.44 1.52
$4 \quad 4.5 \quad 5 \quad 5.5 \quad 6 \quad 6.57$ $1.591 .651 .71 \quad 1.761 .82 \quad 1.871 .91$

I NDEX

Aerodynamic Center 11, 12, 41, 101
Airfoils $5,7,8,10,11,21,30$
Altitude 2, 100
Area Determination 10,86
Aspect Ratio 3, 8, 13, 14, 45, 49, 65, 101
Biplanes 35, 36, 54
Boundary Layer 11,12,104
Ganard, TailFirst $23,24,43$
C. G. $25,33,34,37,42,62,102$

Center of Lateral Area 55, 57

Center of Pressure 12,13,14,55, 104
Centrifugal Force $46,48,98$
Circling Flight 52, 53, 54
Climb Pattern 35, 36, 49-51, 102
Construction 88,89,90,91 89
C/L Models 9, 18, 30, 31, 42, 53, 59, 87,
Design 21, 22, 23, 24, 25, 28, 63, 64, 65,
Dethermalizers 61,62,101 98
Dihedral 47, 48, 53, 102
Directional Stability 44,45
Drag 3, 4, 5, 6, 10, 12, 13, 14, 31, 82, 98
Duration 58-60, 65, 75, 83, 97, 100,
End Plates 14,101 104
Engines 20, 26, 78, 79, 80, 100
Fin Area 44, 45, 64, 99, 103
Flight Characteristics 49-51
Floats 6, 67, 69, 87
Flying Wings 27, $28 \quad 91$
F/F Gas Models 9, 18, 23, 24, 49-51,
Gyroscopic Forces $46,48,51,98$
H/L Gliders 9, 62, 63, 65
Helicptr \&Rotary Wings 46, 73, 74, 75
Induced Drag 13, 14, 24,
Jets (Jetex \& Rockets) 81, 83,
Joukowsly Section 5, 7, 77
Landing Gears 68,69
Lift 3, 4, 7, 8, 12, 31, 43, 66, 98, 103
Longitudinal Stability $37-43,99$
Looping 46
Mat erial, Strength of $46,84,85$
Mean Camber 7, 9, 41
Microfilm 21,22,85,87
Moment of Inertia 25, 28, 46, 48, 55-57, Neutral Point 39, 41
N.A.C.A. Number System 4

NOMOGRAPHS
Aspect Ratio 14
Centrifugal Force 48
Circular Airflow Angle 54
Prop. Dia. Gas Model 18, 20
Prop Dia. Rubber Model 18
Dihedral, Skid Angle 48
Duration of Rubber Models 60
Fin Area 45

Flying Thrust 34

Gyro Force 48
Lift, Drag 62
Multi., Div. , Power \& Roots 96
Power - Velocity 62
R. C. Weight Estimates 28

Reynolds Number 7
Stability \& G. G. Galculations 41, 42
Static Thrust 19
C/L Power Required 30
Ornithopters 70, 72, 103
Parachutes 6,61,62
Performance 62
Profile Drag 14,24, 101 94, 95, 99
Props 6, 15-20, 22, 32, 34, 38, 42, 48, 51,
R. C. Models $25,28,33,44,56,103$

Reynolds Number 4, 5, 6, 7, 11, 12, 26, 27, Rubber 19, 68, 76, 77, 87,93 79,98
RUBBER MODELS
Indoor $6,7,18,21,22,36,60,62,87$
Outdoor $9,18,19,21,22,60,62,87$,
Rudder 44, 45, 104
91
Scale Effect 11
Serrations 8, 19
Side Area 55, 56, 57
Side Slip 47, 48
Sinking Speed 58,62,65,97,101
Slipstream $32,34,66,74,98,103$
Specs, Contest (1955)22, 33, 39, 47, 59
Spinning 53, 54
Spiral Stability 52-54
Stabilizers 37, 43, 64,66
Stress Calculations 93, 100
Sweepback 10, 27, 28, 102
Take-Off $31,49,51,97$
Testing 82,83
Thermals 52, 76, 77, 102
Thrust Line 35, 36, 38, 49-51, 98, 102
Torque $16,35,36,79,80$
Towline Gliders $9,62,63,64,66$
Turbulators 5, 8, 26
Up Gusts $50,52,102$
Vee Tails $45,64,66$
Vibrations 71, 72, 78
Weights $22,24,28,65,77,86,87$
Wind Tunnels 31,32
Yawing 44, 45,53,54
Zero Lift Line 3, 4, 7, 8, 21, 22, 23, 25, $29,30,41,49,61,62,66,67,69,98,103$

REFERENCES ABBREVIATIONS
T. R* = NACA Technical Report
T. M. $=$ NACA Technical Memo
T. N. $=$ NACA Technical Notes
$\mathrm{G}=$ Goettingen $\mathrm{E} *$ Eiffel
(Index Tabulated by Charles Sotich)

FIADIO
SPEEO RADIO WAUES
186,000 MILES P.SEC.
$300,000 \mathrm{MET} / \mathrm{SEC}$.
MEGA-1,000,000
MICRO-11,000,000
HILO-1000, DECI 1/10
MILLI IIOOO
WAVELENGTH= SPEED
FOR 27.255 MEGACYCLE
$186,330 \times 5280 / 27,255,000$

$$
=36 \mathrm{FT}=1 / 4 \cong 9 \mathrm{FT}
$$

TORQUE $=H P \times 550 / n \times 2 \pi$
T=3.14/5 ...n PEVP SEC.

SPEED OF SOUND: ABOUT 1100 FT/SEC.
$\mathrm{HCH}=2.54 \mathrm{cM}$ OR $25.4 \mathrm{~m} . \mathrm{m}$. $U . / I H=16.39 \mathrm{cu} . \mathrm{Cm} . \angle B=7000 \mathrm{GP}$. FT.PS $=1.467 \mathrm{M}, \mathrm{PH}$ Fr $=.305 \mathrm{MET}$ GRAIH=,0648GRAM GAL $=23 / \mathrm{C} .1 \mathrm{H}$ $O Z=31.1$ GRAM $50.1 \mathrm{~N}=6.4 S Q \mathrm{CM}$. RUIDOZ $=1.805 \mathrm{CU}, \mathrm{M}$
DOUMD(AVOIR) $160 z . Q_{T}=.9466$
" (TROY) $120 z$.
NAUTICAL MILE~ 6080.2F $/ K$ MOT $=1 \mathrm{~N}, \mathrm{M} / \mathrm{HP}=1.689$ F.P.S
MILE $=5280 \mathrm{FT}$
$1 \mathrm{KILOMET} / \mathrm{HP}=1.609 \mathrm{MIL} / \mathrm{H}$.

OHMS LAW FORMULAS:
$W=$ Watts $=E I, I^{2} R, E^{2} / R$
$E=V O L T S=I R, \sqrt{W R}, W / T$
$I=A M P E R E S,=E / R, \sqrt{\frac{W}{P}}, \frac{W}{E}$
$R=O H M S=E / I, E^{2} / W=W / I^{2}$

EMERGY=
POTENTIAL EMERGY IFRELEASED CANDO WORK.
BODYHAS KIMETIC ENERGY
IFIT IS MOUING
$K I N . E N=M X V V^{2} / 2$
MOMENTUM $=$ M×V
AHGULAR MOMENTUM $=I * \omega$
U -ANG. VELOC. In PADIANS 1 RAOI $=573^{\circ}$
$360^{\circ}=2 \pi$
I = MOMENTOF INERTIA.
BEANOULLI'S THEOREM
TOTAL HEAD = POTENTIAL.
PRESSURE ANDVELOCITY HEADS MUTUALLY COH NEATTIBLE. ~

GREEK ALPHABET			
ALPHA	$A \times$	NU	M
BETA	B β	XI	
GAMMA	$\Gamma \%$	OMICROH	0
DELTA	$\triangle \delta$	PI	$\pi \pi$
EPSILON	$E \in$	RHO	Pp
ZETA	25	SIGMA	S6s
ETA	H ${ }^{\text {\% }}$	tau	T
THETA	$\theta B \rightarrow$	UPSILOH	
IOTA		PHI	¢p\$
KAPPA	K K	CHI	X x
$\angle A M B D A$	$\wedge \lambda$	PSI	Ψ
MU	M μ	OMEGA	ω

RAUL J. HOFFMAN THROPHY

Raul J. Hoffman was technical adviser to the Chicago Aeronuts until his death in 1956. The Club has perpetuated his name by sponsoring a throphy bearing hisname. This throphy is annually awarded to the modeler, regardless of age, whose model accumulates the highest three flight total in Class "A" Free Flight Gas Event at the Nationals. A plaque is also given to the winner to keep.

[^0]: 1 FLUIOOZ $=1.8 \mathrm{cN} .1 \mathrm{H}$

