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FOREWORD

This is being written 107 years after Otto Lilienthal made his maiden 
flight in his first hang-glider, 103 years since Percy Pilcher flew, and 95 
years after the Wright brothers took to the air in their rather more 
conventional machine at Kill Devil Hill. So we are celebrating about a 
century of successful human flight, throughout which unpowered 
aerodynes, from Lilienthal's hang glider to modern sailplanes (and not 
forgetting the Space Shuttle) have introduced major innovations to 
aeronautics. The first machines provided the very foundations of flight; 
the Vampyr (1921) used the first leading edge torsion-box structure; in 
the late 1920s   an era in which most powered aeroplanes showed a 
cheerful disregard of profile drag   sailplanes began to look rather as 
they do today; in the 1930s, wings became thinner to deal with the 
demands of cross-country flying, and the whole machine became stronger 
in the pursuit of cloud flying; in the 1950s, extensive natural laminar 
boundary layers were being pursued; in the 1960s, the first all-composite 
flying machine with an aerofoil designed specifically for sailplanes, flew 
in the World Gliding Championships. Since then, we have seen the use 
of more exotic plastics and continuing advances in the techniques of 
low-loss aerodynamics.

Once it became apparent that the atmosphere was a source of energy 
capable of sustaining flying machines, the contributions of soaring to 
meteorology have been equally significant. Much of the knowledge of 
the structure of atmospheric turbulence was made by pilots using 
thermals, from 1929 onwards. Similarly, lee waves were the subject of 
intensive investigations, particularly in the 1950s, leading to 
comprehensive mathematical theories.
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viii Foreword

Nearly all of this effort has been in the pursuit of the sport of soaring, 
an occupation whose many facets include its intellectual fascination. It 
has been noted that all of the materials required to construct a good 
sailplane were available hundreds of years ago, and at least one work of 
fiction ("The Woolacombe Bird" by Ann Welch, Jonathon Cape, 1964) 
has been based on this observation. But it needed the sort of thinking 
which went with the blossoming of technology in the 19th and 20th 
centuries, and the corresponding increase in leisure time, to make it 
really happen. It is a happy coincidence (or perhaps a manifestation of 
the Anthropic principle) that the properties of materials, the motions of 
the atmosphere and the mass of individual people, all conspire to make 
it possible.

In such circumstances, both the machines and the techniques of 
using them require the generous application of technology. From the 
point of view of the soaring pilot, he can make quite a lot of headway 
on the basis of physical explanation but, ultimately, a certain amount of 
numeracy is required. For example, the physical basis of the British 
handicapping system seems straightforward enough, but carrying out 
the calculations for a new type of sailplane is not a negligible exercise.

So this book is aimed at the Numerate Pilot, who wants to know the 
basis of the design parameters of his machine, how it performs in various 
circumstances, the various ideas relating to optimising its overall 
performance and their practicability. This is not a "how to do it" book: 
there are plenty of those, some written by better pilots than myself. Nor 
is it intended to present lengthy passages of profound mathematics: it 
does present some of the really fundamental concepts in detail, but 
mostly it displays results so that the Enquiring Numerate Soaring Pilot 
can dig deeper, if so inclined. Some readers may be surprised to find 
that there exists such a quantity of endeavour, often quite profound, 
and all devoted to the furthering of a sport. Moreover, what appears 
here is little more than the tip of an iceberg: there is an enormous 
background of airworthiness, structural and aerodynamic design, stability 
and control, meteorology and electronics and indeed, much of the stock 
in trade of professional aeronautics. We should be happy that so many 
people exercise their talents in the pursuit of better soaring.
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Much of this book is concerned with matters which are fundamental 
to the understanding of soaring, such as energy heights and inter-thermal 
speeds. It may come as a surprise that some of these concepts are 
markedly more subtle than first acquaintance would suggest. There are 
also some bits of analysis which depend on the pilot having powers of 
prophecy. Where is the next thermal? How strong is it? How does its 
strength vary with height? What is the point of such considerations, you 
may ask, when the pilot's powers of prophecy are so limited? Maybe 
this book will provide some answers.

In writing this book, it seemed important to gather together many of 
the fundamental ideas which have made modern soaring possible before 
they are lost, because some of them lurk in obscure or out-of-print 
documents. The choice is mine, but I hope that readers will find it 
suitable.

FGIrving 
Lasham, 1998
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Chapter 1

UNITS, AND SOME BASIC IDEAS

Units

On the assumption that the main readership of this book is likely to 
speak English as a native language, the units are mainly those approved 
by ICAO for non-metric countries. At present, however, some confusion 
exists in the UK. The reader would undoubtedly have been educated 
metrically and is probably accustomed to speeds in m/s and forces in 
newtons, and then he enters the world of practical aviation and finds 
speeds in knots and forces in pounds (strictly, pounds-force). Moreover, 
since most sailplanes originate in Germany, we are accustomed to masses 
in kilograms and the location of the centre of gravity in millimetres from 
some datum. Here, we will generally settle for speeds, both along the 
flight path and in the vertical direction in knots, masses in pounds, 
forces in pounds-force and heights in feet. This instantly introduces 
some bother, for if air density were in lb/ft3 , then aerodynamic forces 
would be in poundals. To cause forces to be in pounds-force, we invent 
a unit for air density called the slug, so that air densities are in slugs/ft3 . 
A slug is thus 31.740lb. (There is a corresponding quantity in metric 
units.) Whilst mainly using English units, we will occasionally use the 
metric system, whichever may be convenient. A list of relevant conversion 
factors is given in Appendix II.
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Dimensionless Coefficients and Other Numbers

Aeronautical engineers are notoriously fond of dimensionless 
quantities, and very convenient they are when you are accustomed to 
them. We will try to keep the use of such quantities to a minimum but 
a few are inescapable, particularly the coefficients used to describe the 
characteristics of wing sections. Thus, the lift coefficient is:

. (1.1) 

(See the Table of Symbols for the meanings of the various symbols.)

The effect of this is that the smaller V is, the greater will be the lift 
coefficient and vice-versa. Also, the magnitude of the lift coefficient will 
be independent of the system of units in use. In nearly level flight, 
L = W, approximately, and under these conditions, a lift coefficient of 
about 0.13 would correspond to the never-exceed speed of the average 
sailplane, and 1.5 1.6 would be about the maximum value for an 
unflapped wing.

The " 7 " which appears in this equation is not essential to make the 
the coefficient dimensionless and indeed, for quite a long time, it was 
omitted. However, it is convenient to include it because \pV 2 is the 
dynamic head of Bernoulli's equation.

In an exactly similar fashion, we can define a drag coefficient:

CD = D/\pV 2S (1.2)

and 0.005-0.006 would be about the minimum drag coefficient of a 
two-dimensional wing section at sailplane Reynolds numbers.

Both the lift and drag coefficients will be functions of other 
dimensionless quantities, in this case the angle of attack or incidence 
and the Reynolds number. The Reynolds number expresses the ratio of 
the inertial forces in a fluid to the viscous forces and has the value 
pVl/n. Here, / is a reference length, such as the chord of a wing. (See, 
for example, Anderson, 1991.) For sailplane wings, Re would normally 
lie between 0.5 x 106 and 5.0 x 106 . This is a pretty unfortunate range to 
be in, since the characteristics of wing sections are changing fairly rapidly 
with Reynolds number. Strictly, these coefficients are also functions of
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Fig. 1.1. The characteristics of a two-dimensional aerofoil. The curves on the left are 
presented as "polars" (i.e., the angle of incidence has been eliminated), whilst the 
curves on the right are simply lift coefficient against incidence.

Mach number, V/a, but this quantity is unlikely to be significant at the 
speeds of sailplanes.

The characteristics of a two-dimensional wing could therefore be 
presented as a series of curves of CL and CD vs. angle of incidence, a, for 
various values of Re . (See Fig. 1.1.) Also, it is possible to omit the angle 
of incidence, and to present the characteristics of an aerofoil as a series 
of curves of CD against CL at various Reynolds numbers. This was due to 
a suggestion by Otto Lilienthal, who called the result the "polar diagram". 
(See Prandtl and Tietjens, 1934, p. 147.) Later, this expression was applied 
to the curve of rate of sink as a function of forward speed for a complete 
sailplane.

Lift Curve Slope

The above curves of CL vs. a are quite close to straight lines at angles 
of incidence below the stall and it may be shown that, in incompressible 
flow, with viscosity neglected but with the Kutta-Joukowski condition 
satisfied, the lift coefficient of a thin two-dimensional wing will be:
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(1.3)

The lift curve slope is therefore 2n for a in radians, or about 0.11 for 
a in degrees. Practical values are remarkably close to this value (Kuethe 
and Chow, 1986, p. 122), but may be slightly more or less. We shall see 
later that a finite aspect ratio reduces the value somewhat.

True and Equivalent Speeds

It will have been noted that the dynamic head is jpV , where p is 
the local air density and V the true airspeed. This can equally be 
written jp0 V2tl where p0 is the standard sea-level air density and Vt is 
known as the equivalent airspeed. Hence V( = V(p/po) 2 . Equally, the 
dynamic head which appears in the expressions for the lift and drag can 
be expressed in either fashion. Writing the lift as CL ~2p0 Vi S, we see that 
the number of independent variables has been reduced by one. Also, 
for a given glider at a given weight, with a fixed value of CLmax , the 
stalling speed will occur at a fixed value of the equivalent airspeed. This 
is particularly useful because, as shown in Chapter 6, the reading of the 
airspeed indicator is approximately the equivalent airspeed, or at any 
rate, if the EAS is fixed, so is the IAS. This is also true for most other 
significant speeds: for example, the speed for best gliding angle of the 
above sailplane will also occur at a fixed EAS.

Boundary Layers

The most important aspect of the flow about an aerofoil to be affected 
by Reynolds number is the flow in the boundary layer. This is the thin 
layer of air adjacent to the surface of a wing or any other body in the 
airstream, where the local velocity is reduced by skin friction, becoming 
zero at the surface. There is a tendency to think of boundary layers as 
being of almost imperceptible thickness under normal circumstances, 
but not so. Towards the trailing edge of a low-drag wing at a typical 
sailplane Reynolds number, it could well be a couple of centimetres 
thick on the upper surface. In 1883, Osborne Reynolds showed that 
there are two types of flow in the boundary layer: laminar, where the 
paths of particles are substantially parallel to the surface, and turbulent,
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where the motion of the particles is altogether less organised and, in 
particular, high-speed particles from the outer parts of the layer can 
move down towards the surface. (See Simons, 1978, for a good account 
of boundary layers. This is in the context of models, but it is well worth 
reading.)

The behaviour of the boundary layer, and hence the skin friction 
which it produces, depends on the pressure gradients to which it has 
been subjected, the Reynolds number (i.e., the instantaneous value, 
based on the distance between the start of the boundary layer to the 
point under consideration) and imperfections in the surface.

These remarks relate mainly to two-dimensional boundary layers, 
and matters become markedly more complicated in three dimensions. 
Modern sailplanes are substantially free from surface defects, save for 
the discontinuities at control surfaces. A boundary layer will start life in 
the laminar condition at the leading edge and, at the Reynolds numbers 
of sailplanes, will remain so, until somewhere around the minimum 
pressure point on that surface. Now a laminar boundary layer produces 
markedly less drag than a turbulent one, so it would seem desirable to 
get the minimum pressure point on, say the top surface of a wing, as far 
aft as possible. But this produces other problems: for example, the 
increasing pressure gradient behind it may become high enough to lead 
to premature separation of the turbulent layer. The point at which a 
laminar layer becomes turbulent is known as the transition point, although 
it is actually a region of finite width (see Fig. 1.2), and it is accompanied 
by a thickening of the layer in order that momentum may be preserved. 
Either a laminar or a turbulent layer may separate from the surface over 
which it is flowing, when the velocity close to the surface has diminished 
to such an extent that the vertical velocity gradient has become zero. 
Broadly speaking, laminar separation which is not followed by re- 
attachment will be unusual on sailplanes. But transition often occurs by 
the laminar layer separating, becoming turbulent and re-attaching. One 
effect of this process is that the drag which results is markedly higher 
than if transition had occurred without the laminar separation bubble, 
as it is known. Various attempts are made to suppress the laminar 
separation, thus obtaining a normal transition. This is done either by a
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TRANSITION 
POINT

Fig. 1.2. Transition on an aerofoil without a laminar separation bubble.

gentle flow of air from a pitot tube through small holes just ahead of the 
separation bubble, or by zig-zag tape, but such methods only work if 
the minimum pressure point is in a fixed position over a wide array of 
circumstances (Althaus, 1991). On the lower surface of a wing, it is 
possible to fix such a point at about 80% chord; placing the zig-zag tape 
at 77% chord to supress the laminar bubble will then lead to a significant 
drag reduction (Boermans and Waibel, 1989). It is not possible to apply 
this technique to the upper surface of a wing because the minimum 
pressure point is much more mobile. In general, the use of tape is only 
feasible on wing sections specifically designed to take it, although its 
use may be beneficial just ahead of control surfaces.

Designing a wing section with a low minimum drag coefficient, a 
good spread of low drag vs. lift coefficient, and a high CLm3X , requires 
pushing boundary layer theory to about its current limit, but it would be 
folly to suppose that the absolute limit has been achieved. Figure 1.3 
shows the characteristics of a modern section.

It is usual to assume that the best surface is totally smooth, but some 
work at NASA has shown that the skin friction under the turbulent 
boundary layer can be reduced if the surface has streamwise grooves or 
"riblets" (Kuethe and Chow, 1986). The riblets are pretty fine, roughly 
comparable with the surface of an LP record. The snags are that they must 
be quite accurately aligned with the local flow direction and, in a laminar 
region, they will trigger transition to turbulent flow.
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Fig. 1.3- The characteristics of a modern two-dimensional aerofoil section. The section 
is DU-84-158 at a Reynolds number of 1.5 million. The tape is of the zig-zag type, with 
a chordwise dimension of 11 mm and a width, perpendicular to one limb of the tape, of 
3 mm. The thickness is 0.5 mm. The decrease in drag with the tape fitted is most 
marked.

The Effect of Flaps

Figure 1.3 shows the properties of an unflapped section of reasonable 
thickness, about 16%. Increasing the thickness will broaden the CL - 
range (i.e., the range of lift coefficient over which the drag coefficient is 
reasonably low. In the days of NACA 6-series wings, this was very well 
defined, but nowadays it is comparatively vague. Hence the "reasonable" 
in the above sentence.) But the actual value of the minimum drag 
coefficient is increased and, broadly speaking, the two effects will largely 
cancel out. The application of a small flap at the trailing edge enables us 
to escape from this quandary: by changing the flap setting, the camber 
is effectively altered. A small downward deflection will move the 
minimum drag coefficient in the direction of higher lift coefficients, but 
leaves its value much the same. At the same time, the angle of zero 
lift becomes more negative, and hence the changes in the incidence of 
the fuselage are somewhat reduced, compared with those of an un 
flapped sailplane. So, we can get the lower drag of a thin wing and the
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CL - range of a thick one. Also, by using large flap deflections, the land 
ing speed can be decreased and the effect of airbrakes enhanced.
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Chapter 2

WINGS AND WINGLETS

Wings of Finite Span

The previous chapter dealt with two-dimensional wings (i.e., wings 
of infinite aspect ratio). But any real wing has a finite span and 
therefore produces an "induced" drag, basically due to imparting 
downwards momentum to some of the air through which it is passing, 
in order to produce the lift (Prandtl and Teitjens, 1934, pp. 185-225). 
Another way of looking at this situation is to note that on a lifting 
wing, the average pressure on the lower surface exceeds atmospheric, 
whilst on the upper surface it is less than atmospheric. Towards the 
wingtips, this pressure difference tends to disappear, leading to an 
outwards drift of the air below the wing and an inwards flow on top. At 
the wingtip, the opposing velocities will cause the air leaving the wing 
to form a vortex. In fact, the above inward and outward velocities will 
cause vortices to be shed all the way across the span and, for a given 
span, the induced drag will depend on the spanwise distribution of the 
trailing vorticity which, in turn, will depend on the spanwise distribution 
of lift.

There is another way of envisaging this situation. Over the upper 
surface of a lifting wing, the air velocity will be greater than the speed 
of the wing through the air, whilst it will be less over the lower surface. 
This is equivalent to superimposing a vortex on the mainstream velocity, 
known as the bound vortex. According to a theorem due to Helmholtz, 
a vortex cannot just end in mid-air, and hence, where the bound vorticity 
becomes less, a trailing vortex leaves the wing trailing downstream. In 
general, therefore, a lifting wing will be followed by a system of trailing

11
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vortices, the precise nature of which will depend on the spanwise 
distribution of lift across the wing. These vortices will induce a downward 
component of velocity at and behind the wing and the downwash at 
any section of the wing will be the sum of all the effects of the trailing 
vortices across the span. This downwash, together with the mainstream 
velocity, rotates the mainstream and hence also rotates the lift vector, 
giving it a component in the direction of motion. This component is 
equivalent to a drag and is, in fact the induced drag.

Mathematically, this leads to quite a complicated situation, and the 
calculation of the induced drag of a wing of given planform is by no 
means sraightforward. It can be further complicated if the wing has 
some spanwise twist. If the spanwise lift distribution is elliptical, it can 
be shown that the induced drag is then a minimum, and the value of the 
downwash is then constant. Its value will be

e = CL K A , (2.1) 

and the induced drag coefficient will then have the value

CDt = C 2L /nA . (2.2)

For wings with some other lift distribution, the above expression 
can include a k before the right-hand side, k being a constant generally 
greater than 1.0. If we consider the induced drag of planar wings, 
any variation from the elliptical lift distribution will produce an increase 
in induced drag, but it is comforting to appreciate that the lift has a 
distinct tendency to become elliptical. Indeed, Schrenk (1940) devised 
the approximate rule that the distribution of the lift associated with 
the untwisted chord distribution is nearly proportional to the ordinate 
lying halfway between the elliptical and actual chord distributions for 
the same total area and span. Hence the wing which will produce an 
elliptical spanwise lift distribution is untwisted and has an elliptical 
planform. For real wings, an elliptical planform is a great nuisance, 
because everything has double curvature. It is much simpler to devise a 
wing whose generators are straight lines, and this can be done in two or 
three spanwise stages. For a well-designed wing, the increase in drag 
relative to the "elliptical" value can be very small (Boermans and Waibel,
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1989). For sailplane aspect ratios, k will commonly be between 1.02 and 
1.05.

Everyone's idea of the perfect elliptical wing is, of course, that of the 
"Spitfire". But that wing had two degrees of washout (i.e., the tip was 
twisted two degrees nose-down compared with the root), so the lift 
distribution was decidedly non-elliptical.

It is important to note that there is no way of escaping induced drag. 
Ultimately, it is a consequence of Newton's laws, resulting in the 
application of downwash to the air over a finite span. But it is possible 
to invest in a non-planar lifting system, with less induced drag than a 
simple planar wing by using winglets. The ultimate non-planar lifting 
system is, of course, the biplane   even more generally, the multiplane 
(Prandtl and Teitjens, 1934, para., 119) and it can readily be shown that 
the total induced drag of a biplane is less than that of a monoplane of 
the same span and total lift. The effect, however, is not very great: if the 
ratio of the vertical spacing between the wings to the span is 0.2, then 
the induced drag of the biplane will be about 0.74 times that of the 
monoplane. An increase in span of the monoplane of about 15% would 
produce the same effect, or about 2.25 m for a 15m sailplane. Before 
rushing off to design the ultimate biplane sailplane, it is important to 
contemplate the effects of the above restrictions on the overall layout.

It can also be shown (Prandtl and Teitjens, 1934, para., 120) that if it 
is assumed that all of the downward momentum applied to the air in 
producing the lift is in the form of a uniform velocity, then this can be 
imagined as affecting a cylindrical stream tube, whose diameter is equal 
to the span. All of this applies when the lift distribution is elliptical. This, 
of course, is a highly artificial way of visualising the actual scene, in 
which velocities induced by the vortices associated with the wing extend 
to infinity, but it is a useful way of visualising the scene. It therefore 
follows that any induced drag reduction can only be achieved by 
increasing the area of the stream tube. Devices such as winglets do this 
in the vertical direction to a limited extent (Marsden, 1991), and can 
reduce the induced drag by about 20%. However, there is some increase 
in the skin friction, and much of their merit consists of improving the 
roll rate and decreasing the tip-stalling tendency.
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It can be inferred from the above remarks about Schrenk's method 
that, if a wing has a large amount of taper, the loading will increase 
towards the tip. This, together with the decreasing Reynolds number in 
this region, will tend to lead to premature tip stalling. However, this can 
be discouraged by applying washout, i.e., twisting the wing in the leading 
edge down, but this obviously changes the spanwise lift distribution 
usually in the sense of increasing sense the induced drag. Some types of 
wooden sailplane of a former generation appeared to produce a down 
load over the outer parts of the wing at high speeds, and they could be 
seen bending downwards quite markedly. Incidentally, the washout 
does not increase linearly with spanwise distance for a wing with straight- 
line generators.

It will be seen that the downwash at any spanwise station is influenced 
by the distribution of circulation across the whole span, and the local 
circulation for a given wing will depend on the downwash. In general, 
therefore, this situation leads to an integral equation (Kuethe and Chow, 
1986, p. 145), for which straightforward solutions only exist for a few 
special cases. Solutions for the general case were due to Glauert (1937). 
Computer programs exist for dealing with this situation, but a semi- 
empirical method is due to Diederich (1952), explained further in 
Torenbeek (1982), App. E.

Three-Dimensional Lift Curve Slope

A further consequence of the reduction of the wing incidence due 
to the downwash is a decrease in the lift curve slope. If this has the 
"elliptical" value of Eq. (2.1), and the two-dimensional lift curve slope is 
a0l then the 3-D lift curve slope will be a0nA /(a0+KA ). If the 2-D slope 
is close to 2n, this becomes a0A/(A +2). Although this appears to have 
rather restricted applicability, it is quite accurate in most circumstances.

Drag of Three-Dimensional Wings

For a real wing of finite span in real fluid, there are therefore two 
sources of drag; the profile drag, which is mentioned in Chapter 1, and 
the induced drag, as mentioned above. The profile drag is due in the
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main to skin friction, or to tangential forces on the wing surface, whilst 
the induced drag is ultimately due to normal pressures acting 
perpendicularly to the surface. In order to calculate the profile drag of a 
wing, we assume that, at any spanwise station, the wing section has the 
same characteristics with respect to the rotated airstream as it has in 
normal two-dimensional flow. Integration across the span then gives 
the total profile drag.

Tail surfaces

Tail surfaces are, of course, small wings and therefore all of the 
above remarks will apply while taking account of elevator deflections. 
However, it is important to note that the tailplane is exposed to the 
downwash from both the bound and trailing vortex systems of the wing, 
whereas in calculating the induced drag of a wing, we consider only the 
effect of the trailing vortices. Also, in general, the tailplane will have its 
own induced drag. For a detailed analysis of these matters, see Jones, 
1979 and Vernon, 1992.
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Chapter 3

THE DRAG OF A SAILPLANE

Finding the total drag of a sailplane is, strictly speaking, a very 
complicated matter. It will not simply suffice to add together the drags 
of the various components, taking into account the induced drags of 
the wing and tail, remembering that the latter will be working in the 
induced downwash of the former. To some extent, the performance 
will depend on the CG position (Irving, 1981, and Vernon, 1992) 
which, in turn, settles the tail load. So we should, strictly, define the CG 
position to which the stated performance applies, and then, given a 
suitable knowledge of static stability, the tail load and the elevator setting 
can be defined for each lift coefficient. However, in practice, the 
performance varies little with CG position and it will normally suffice to 
give it for some average location. It might be thought that some fairly aft 
position of the CG would be best, since this would normally give the 
least downwards load on the tailplane, or perhaps a small upwards 
load at low speeds and, indeed, the tailplane might well be sized so 
as to make this possible. But as we shall see later, the reality is 
more complicated. Also, we cannot simply add together the individual 
drags of the components of the sailplane, because the flow about one 
part, the wing for example, alters the drag of an adjacent component, 
in this case the fuselage. It may well be necessary to apply a little 
CFD to explore the flow about, say, the wing roots. It can well be 
imagined that when one takes into account the changing aspects of 
the boundary layer and the interactions hinted at above, then the total 
drag even in steady flight will be unlikely to conform to a simple analytical 
expression. In situations where the performance needs to be stated 
over a wide range of conditions, one may well use a polynomial fitted

17
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to the observed performance. For example, Pierson, 1977, assumes a 
simple quadratic expression while other authors have taken more 
complicated expressions.

The Parabolic Polar

If we assume that the total drag coefficient of a sailplane may be 
written

CD = CDO + knA (3.1)

where CDo is the minimum drag coefficient of the sailplane, assumed 
constant, and k is also constant, then if we replace the drag and lift 
coefficients, as in Eqs. (1.1) and (1.2), we get:

WVsi = AV + BVt (3.2) 

since it is also true that

= WVsi (3.3)

as we shall see in more detail in Chapter 4.
The expression "parabolic polar" is a consequence of Eq. (3.1), and 

A and B are likewise constants. Now Fig. 1.1 shows that the 
profile drag of a wing, and hence of a complete sailplane, is far from 
constant. But it is not too far from parabolic, provided that the lift 
coefficient is not too extreme, and hence we can regard (3.1) as being 
fairly accurate, provided that we recognise that k now includes a 
contribution from the profile drag. Indeed, if we work back from an 
actual polar to an expression in the form of (3.1), we find that k is of the 
order of 1.5, instead of the much lower value to be expected from 
Chapter 2 (see Goodhart, 1970). It will also be seen that the minimum 
value of the profile drag is at a slightly positive value of the lift coefficient, 
instead of zero as assumed in the above expressions. This is equivalent 
to introducing a term in CL in Eq. (3.1), but experience shows that such 
a term is usually unnecessary.

This sort of thinking applies not only to fixed geometry sailplanes, 
but also to those with flaps, provided that the performance curve now
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Fig. 3-1. The performance curve or "polar" of the ASW-24 at a wing loading of 6.7 lb per 
square foot.

represents the envelope of all the curves corresponding to the various 
flap settings.

What is the reason for wishing to obtain an analytical expression for 
the performance of a sailplane? Partly because simple expressions can 
be adduced for best gliding angle, minimum sink, etc., as in the next 
chapter, and because it enables results for the MacCready ring and similar 
devices to be obtained without trying to draw tangents. And how accurate 
is it? Usually pretty good, for speeds a little more than that of the best 
gliding angle up to about the highest speed likely to be used in practice. 
Divergence from this simple result is mainly due to turbulent separation 
at low speeds and laminar separation bubbles at high speeds. See, for 
example, the performance curve of the ASW-24, in Fig. 3.1.

Significant Speeds

For a sailplane with a parabolic polar, the performance curve will 
look like Fig. 3.1. The minimum rate of sink will correspond to point A 
and the best gliding angle to point B. At point A, the equivalent airspeed
is:

V,,H. =ims (3.4)
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and the "equivalent" minimum rate of sink is:

V = 4 4k} C u?21n*A 32 . (3.5)

These rather complicated-looking results can be obtained by assuming 
that L= W, substituting in detail for the quantities in (3.2) above and 
differentiating to find the minimum value of K5 (p/p0). Also, it will be 
noted that the concept of "equivalent" vertical speeds, analogous to 
equivalent forward speeds as discussed in Chapter 1, is being introduced 
here. This has the merit that the value of quantities such as the equivalent 
minimum rate of sink is independent of height.

Likewise, differentiating to find the least value of Vsi /Vi gives the 
speed for best gliding angle as:

V- = 3T V (3 6)v to ~> v ims W-W

and the best gliding angle will be:

(vsl /Vs )m . n = tan" 1 (4k CDo/nA ) * . (3-7)

Rather more familiar will be the maximum lift/drag ratio, whose 
value will be (nA/4R CDo).

At first sight, it might be thought that the quantities corresponding to 
the symbols above are all truly independent. However, in practice, 
increasing the aspect ratio, A, will normally increase the wing loading, 
w, and cause a slight decrease in the "induced drag factor", k. Also, the 
span, b, does not appear specifically in these equations, and one might 
be tempted to suppose that a good 1ft span model of, say, an 
ASH-25, would give the same performance as the real thing with a span 
of 82 ft, provided that the wing loadings remain the same. This does not 
occur in practice because the Reynolds number of the real thing is so 
much higher than that of the model, leading to a far better performance. 
Also, the best gliding angle and the minimum rate of sink, both decrease 
as the aspect ratio increases, other things being equal, so one might be 
tempted to think that the highest possible aspect ratio, limited only by 
the structure, should be used. This is more-or-less true, if there is no 
limit to the span, but in the case of a Standard or 15 m Class machine, 
where the span is fixed, too high an aspect ratio will lead to a wing
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loading which is inconveniently high for circling in thermals on an 
average day. To some extent, this can be overcome by carrying water 
ballast on good days, but it is worth noting that the total weight should 
be proportional to the square root of the rate of climb, to a first 
approximation, leading to some spectacular quantities of ballast on really 
good days. And, so far, we have totally ignored the possibility of flutter, 
which is often a major consideration in the design of high aspect ratio 
wings. So, in practice, the various quantities mentioned above are not 
independent and one must be careful about drawing conclusions from 
the above equations.

The Non-Parabolic Polar

A polar may not conform to equations such as (3.2), but it remains 
true that at point A, the drag power will be a minimum, i.e., dDV/dV= 0 
and at point B, dD/dV= 0. It is worth noting that the application of 
these criteria gives speeds in both cases which, being "true", increase 
with height. But they can equally be written with Vt substituted for V, 
in which case, the speeds will be "equivalent" and will not be a function 
of height. Most of the results which follow apply generally, but can be 
simplified if the polar is parabolic. It is also true that the speed for 
best gliding angle is higher than that for minimum sink, which itself 
is higher than the stalling speed, but in many cases, simple expressions 
such as (3.6) will not apply. See Miele, 1962, pp. 120-123, for a fuller 
explanation.

Reynolds Number Effects

Broadly speaking, profile drag coefficients will tend to decrease with 
increasing Reynolds number. A consequence is that the maximum lift/ 
drag ratio, which appears to be independent of the wing loading, will 
increase slightly when the weight is increased by the use of ballast. The 
difference in best gliding angle, as between the unballasted and fully 
ballasted conditions, may well be of the order of one unit. If we compare 
conditions at the same equivalent airspeed, taking heights of sea-level 
and 10,000 ft, we find that the Reynolds number at the greater height is
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about 10% less. (There are two effects, one due to the effect of density, 
and the other due to viscosity, both of which can be obtained from 
tables of the Standard Atmosphere.) This is to be compared with an 
increase of about 15% in Reynold's number due to the ballast in a 
typical case.

A Note on the Analytical Polar

Equation (3.2) above implies that the complete polar can be defined 
from a knowledge of just two quantities, the constants A and B. This is 
only strictly true of sailplanes having parabolic polars and fixed geometry, 
but it will not be greatly in error for the more generalised shape of 
polar, taking the optimum envelope for flapped sailplanes. This enables 
optimisation calculations, as in Chapter 9, to be greatly simplified.
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Chapter 4

THE EQUATIONS OF MOTION

The General Equations of Motion for Flight in a Vertical Plane

Here, we will only be concerned with the relatively slow motions of 
an aircraft, with typical times in minutes, so that we can confine our 
attention to the force equations only. The more rapid motions, with a 
timescale of seconds, are the province of stability and the moment 
equations. For the present, we will consider symmetrical flight in a 
vertical plane (turning flight is considered later), so only two of the 
force equations are relevant. We also assume that:

1. The thrust vector (if present, as in motor gliders) lies in the plane of 
symmetry of the sailplane.

2. In steady straight flight with the wings level, the plane of symmetry is 
vertical and contains the resultant velocity vector.

3. We take axes Ox, Oy, Oz whose origin is at the centre of mass (or 
centre of gravity, CG). Ox lies along the direction of motion, in the 
plane of symmetry and Oz is perpendicular to Ox, also in the plane 
of symmetry and directed downwards for a sailplane in normal flight. 
Oy is directed to starboard. These form a right-handed set of axes, 
strictly known as "air path axes" or, less formally, as "wind axes".

4. The local slope of the flight path, and hence of Ox, is denoted by F, 
and the velocity along Ox by V. By definition, there will be no velocity 
component along Oz.

5. The implication of para., 3 and 4 above is that Ox is not fixed in 
direction relative to a datum line inscribed on the sailplane. For 
example, if the datum is the zero-lift line, the angle between it and 
Ox will be a, which will vary with the conditions of flight. Since we

23
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Fig. 4.1. The forces acting on a motor glider in symmetrical flight. For a pure sailplane, 
the thrust is omitted.

are only concerned with the force equations, this does not matter, 
but it is worth noting that, in considering the stability, we must use 
an axis system fixed in relative to the airframe.

It is also assumed that the thrust acts at an angle £ to Ox, which will 
normally be small. Also, if the axis system has an angular velocity q 
about the centre of curvature of the flight path, there will be an 
acceleration -V2/R, or -Vq along Oz. Since q is the rate of change of 
flight path slope, dF/dt, this component of acceleration can finally be 
written  V(dF/df). The general state of affairs is, therefore, as shown in 
Fig. 4.1.

Since force = mass x acceleration, the equations of motion become:

-mgsinF - D + Tcose = m dV/dt (4.1) 

rag cos r - L - Ts'me = -mV (dF/dt) (4.2) 

along Ox and Oz respectively.

Simplifications

In steady flight, dV/dt = dF/dt=0. Also, £ is often taken to be zero. 
With these conditions inserted, these equations become:

-ragsinF - D + T = 0 (4.3)
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rag cos F - L =0 (4.4)

and if 7=0, in other words if we have a pure sailplane, Eq. (4.3) 
becomes simply

-ragsinF - D = 0. (4.5)

Remarks on These Equations

If we divide (4.5) by (4.4), we get:

tanF = -D/L (4.6)

which indicates that in steady flight, Twill be negative, a consequence 
of the conventional system of axes shown in Fig. 4.1. Also, F willl normally 
be small, and there will be very little difference between F, tanF and 
sin F, if Fis in radians. It is worth noting that in the case of the space 
shuttle, F, in the landing phase, is no longer small and there will be a 
significant difference between the exact and approximate expressions. 
If we square and add Eqs. (4.4) and (4.5), we get:

mg= z+ D. (4.7)

This indicates that, in steady flight, the weight is equal to the resultant 
aerodynamic force acting on the sailplane, the result to be expected 
from Fig. 4.2. 
If we multiply Eq. (4.5) by Kand put mg = W, we get

-WV sinF - DV =0, (4.8) 

and if we put'-KsinF= Vs , the rate of sink, then (4.8) becomes

WVS = DV (4.9)

as one might expect from the conservation of energy. If we multiply 
both sides of this equation by (<r)T , we arrive at the result quoted in 
Eq. (3.3).

So far, all of the results quoted in this chapter apply whether the 
polar is parabolic or not.
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W

Fig. 4.2. In steady flight, the weight of a pure sailplane is balanced by the resultant 
aerodynamic force.

Results for a Parabolic Polar

Equation (3-2) was

WV5i = AVf + B/Vt ,

and differentiating this expression shows that the glide angle, now 
assumed to be (Vsi /Vf ), will be a minimum at an equivalent airspeed 
Vio , where

The corresponding rate of sink will be Vsio , where

WVsio = 2,4£ . (4.11)

Combining these three expressions, Eq. (3.2) may therefore be written 
in dimensionless terms as follows:

2VS</VS(0 = vt /Vlo + vio!Vt , (4.12)

which again shows that we only need to know two quantities, in this 
case the equivalent speed for maximum L/D ratio and the corresponding 
equivalent rate of sink to define the whole polar. In other words, all 
polars are basically of the same shape but can be stretched horizontally 
or vertically, as appropriate. If we know Vsio and Vio , these can be 
substituted in (4.12) to get the dimensional polar.
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Also, if these quantities are known for a weight W} and we wish 
to find the polar for weight W2 , then they can simply be multiplied by 
(l^/Wi)1 (neglecting the effect of Reynolds number), which implies 
that a considerable amount of ballast is required to make a significant 
difference to the polar. The same is also true for the envelope of polars 
corresponding to optimum flap settings for a flapped sailplane.

This, of course, is not exactly true of real polars, but something 
close to it still holds. The object of having a dimensionless curve will 
become apparent in Chapter 8, where the optimisation of flight in thermals 
will be discussed.

Best speeds for Motor Sailplanes

In the cases of self-launching or self-sustaining motor sailplanes, we 
will be mainly interested in the maximum rate of climb and the 
corresponding speed. This will occur when the drag is a minimum, 
assuming that with a fixed-pitch propeller, its efficiency is at a maximum 
at this speed, in other words, at a speed for best gliding angle. It is 
worth noting, however, that deploying the propeller causes a large 
increment in drag, thus increasing the speed for maximum L/D, as 
indicated by Eqs. (3-5) and (3-6). Likewise, the steepest angle of climb 
will correspond to the minimum drag-power speed, the speed for 
minimum rate of sink, again assuming that the propeller efficiency is 
now a maximum at this speed. With a fixed-pitch propeller, it clearly 
cannot have a maximum efficiency at both speeds, and it would be 
better to aim for the best rate of climb rather than the best angle of 
climb.

Performance in Turning Flight

So far, we have only considered straight flight, in which the com 
ponents of weight along Ox, Oy and Oz axes were -mg sinF, 0, and 
mg cosF If we now visualize the sailplane of Fig. 4.1 rolled about Ox 
through an angle 0, and we are looking along the Ox axis, then Fig. 4.3 
portrays what happens. The components of weight along the three axes 
now become -mg sinF, mg cos F sin<2> and mg cosF cos 0 As before,
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Fig. 4.3. The sailplane of Fig. 4.1 rolled about the Ox axis. Note that the Ox axis is not 
horizontal.

there will be an acceleration -Vq along Oz, but now we must also take 
into account an angular velocity r about Oz, so that, finally, the 
components of acceleration along the axes are 0, Vr and - Vq . If the 
sailplane has an angular velocity Q about a vertical axis, then:

and

q = Q cosF sin0

r = £1 cosF

(4.13)

(4.14)

since the components of Q, are analogous to those of g.
The equations of motion, which were (4.1) and (4.2) in straight flight,
now become:

-rag sin F - D + T cose = mdV/dt 

= mVr = mV Q cosFcos0

mgcosFcos<P - L - Ts'me = -mV £2 cos F sin 0

(4.15)

(4.16)

(4.17)

along the Ox, Oy and Oz axes respectively.
These equations are included here for the sake of completeness. If, 

as before, we assume steady flight, then dV/dt - 0 ; for a pure sailplane
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T= 0, and if the glide angle is flat T~ 0. Then these equations simplify 
to:

- rag sin F- D = 0 (4.18) 

vn/g = tan0 (4.19) 

mgcos<P - L - -mVQ sin0 . (4.20) 

It then follows from Eqs. (4.19) and (4.20) that:

n = L/W = secO> (4.21) 

and Eq. (4.19) is conveniently written

(4.22)

Now Fig. 3.1 shows a typical performance curve in straight flight, at a 
load factor L/W of unity. A point on this curve will correspond 
to a given lift coefficient so, if the load factor when circling is n, 
the forward speed at the same lift coefficient will be increased by 
n 2 from Eq. (1.1). Since the lift/drag ratio at a given lift coefficient is 
constant, the drag will be multiplied by n, and it follows from 
Eq. (4.9) that the rate of sink will be multiplied by w3/2. Finally, from 
Eq. (4.21):

(4.23) 

a = (sec0)3/2 . (4.24)

So the effect of angle of bank on turning performance will be as 
shown, for a typical case, as in Fig. 4.4.

It will not have escaped the astute reader that this is all very well, 
but it assumes that, apart from the additional loading, everything is as in 
straight flight. Clearly, this is not true: when turning steadily, the outer 
wing, on the average will have a higher speed than the inner wing, and 
there will, therefore, be a rolling moment tending to roll the sailplane 
into the turn. This means that the pilot must apply an aileron deflection 
to oppose this rolling momentum in the "holding off bank" sense, which 
means an increase in profile drag due to the aileron deflection. Also, the
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Fig. 4.4. The effect of angle of bank on the performance of the sailplane of Fig. 3.1

trailing vortices are now more-or-less helical, as opposed to trailing 
straight behind the sailplane, which will tend to increase the induced 
drag. This has been investigated by Phillips (1972), who concluded that 
the latter effect was negligble, being less than 2% under the most adverse 
circumstances considered.

The increase in profile drag will depend on the characteristics of 
individual wing sections, and in general, on separation of the flow over 
the upper surface of the down-going aileron. If this condition can be 
avoided, the increase in profile drag coefficient will also be very small. 
These effects can be reduced by shifting the CG laterally, a somewhat 
unlikely procedure. There will also be a further increase in profile drag, 
because the fuselage, etc., is also in a curved flow.

Figure 4.5 shows the rate of sink plotted against radius of turn, for 
various angles of bank, as deduced from Fig. 4.4 and Eq. (4.22), the use 
of which will be apparent in Chapter 8.

Ground Effect

When a finite wing is near the ground, it experiences less down- 
wash than in free flight. There are two ways of looking at this 
phenomenon: the downwash cannot pass through the solid earth, which 
causes a reduction in the downwash when the height is small;
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Fig. 4.5. The minimum sink of the sailplane of Fig. 3.1 at various angles of bank and for 
two wing loadings. The upper curve applies to a wing loading of 6.7 Ib per square foot 
whilst the lower applies to 10.2 Ib per square foot. Beside each point, the first figure is 
the angle of bank, the second the airspeed for minimum rate of sink.

alternatively, a wing close to the ground is equivalent to having an 
imaginary mirror-image wing below the ground, with the real wing 
working in the upwash due to the latter. Half-way between the two, the 
streamlines must be straight, due to symmetry. This leads to two effects: 
the lift curve slope is increased and the induced drag coefficient is 
reduced. The first effect depends on the ratio h/b, i.e., the height divided 
by the span, and on the aspect ratio, whilst the second depends largely 
on h/b alone. The increase in lift curve slope is probably not very 
noticeable to the pilot, but the decrease in induced drag can be significant. 
An 80 ft span wing 10 ft up will have about 60% of the induced drag of 
the same wing in free flight.
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Chapter 5

INSTRUMENTS FOR SOARING FLIGHT

The Variometer and Similar Devices

As will be seen in Chapter 8, both the vertical speed and the speed 
along the flight path need to expressed similarly: in other words, both 
should be either "true" or both should be "equivalent". In fact, the latter 

represents the simpler arrangement, since a single performance curve 
then applies at all heights. However, at an elementary level, it is almost 
inevitable that there will be a mismatch, but under most circumstances, 
the effect will be negligible.

Kronfelcl, advised by Lippisch (Welch, 1965), is generally thought 

to have been the first to use a variometer, and it contributed greatly 
to his success in competitions in 1930. The actual device was 
probably of the "Badin" type, originally developed for ballooning, 

not greatly different from the present day "Winter" or "PZL" types. 
In these instruments, a vane is mounted on a horizontal shaft, slightly 

off-centre, so that the gap between the vane and the case increases 

with increasing deflection. The indicating hand is mounted on the 
end of the shaft and a centralising spring is fitted. One side of the 

vane is connected to a capacity and the other to the static pressure or 

a total energy device. Clearly, such an instrument has to be built to 

very exacting standards and fitted with remarkable bearings, since the 

rate of flow of air through the instrument is very small indeed. It 

is, therefore, surprising to find that such a simple device shows 

almost exactly the "true" rate of climb or sink and, indeed, on 

powered aeroplanes, the Vertical Speed Indicator is carefully "tweaked" 

by suitable restrictions in its connections to the outside world, to ensure
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Fig. 5.1. The basic circuit diagram of a variometer.

that any errors are negligible. The basic circuit diagram for any variometer 
is as shown in Fig. 5.1.

Total Energy

The whole concept of total energy now seems so obvious that it is 
surprising, in retrospect, that it was not considered earlier. To the best 
of my knowledge, it was first mentioned in print (in the context of 
soaring) in a letter by Arthur Kantrowitz and printed in the Journal of 
the Aeronautical Sciences, dated 4th September 1940. It is worth 
reproducing in full, with source minor typological changes to suit the 
computer, suice it explains the principles so well.

"Dear Sir:
In soaring, a rate of climb meter (variometer) is usually 

used to detect upward currents in the atmosphere. The rate of 
climb of a sailplane is, however, dependent upon two things: 
first the atmospheric currents and the drag (or sinking speed) 
and second, the plane's attitude. It is necessary, therefore, to 
discount the second effect, i.e., the effect of diving or zooming 
before information about atmospheric currents can be obtained 
from a variometer. This is a difficult procedure in flight since 
the atmosphere is usually rough during favorable soaring
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conditions. The object of this note is to present a variometer 
arrangement in which zooming or diving is corrected for 
automatically.

When a sailplane is zooming or diving, it is gaining or losing 
altitude energy at the expense of kinetic energy. It is, however, 
changing its total energy (altitude energy + kinetic energy) at a 
rate which depends only on its drag and atmospheric air currents. 
Thus, if we measure the rate of change of total energy instead of 
just altitude energy, we have a measurement of atmospheric 
currents and sinking speed independent of the plane's attitude. 
Further, the total energy is the quantity in which the soaring pilot 
is interested in increasing. The total energy of a plane of mass m, 
flying at a velocity v at an altitude h is

 j mv2 + mgb

and it is thus proportional to jV 2 + gb.
In the usual design, the atmospheric outlet of the variometer 

is connected to the static head where it is exposed to the 
altitude pressure —pgb (pg is the density, h the altitude, and 
pressure is measured from sea level pressure). Now, consider 
the variometer outlet to be connected to the throat of a venturi 
with a contraction ratio of 21 which will produce a pressure 
drop equal to the dynamic pressure \pv2 . A venturi tube was 
suggested to Mr E. N. Jacobs to produce the pressure drop because 
it is relatively insensitive to angle of attack. In this case, the 
variometer will be exposed to a pressure

-P8b ~ \Pv2 -

Thus, this negative pressure is also proportional to j v2 + gb 
which is just the measure of the sailplane's total reserve of energy. 
Therefore, if a conventional variometer were connected in this 
manner, it would read rate of change of total energy in altitude 
units. A variometer so connected may be called a "total energy 
variometer". With a total energy variometer, it should be possible
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to measure upward air currents, even in rough air when the 
attitude of the ship is continually changing, without making any 
corrections.

Arthur Kantrowitz 
National Advisory Committee for Aeronautics"

August Raspet (Barringer, 1942, Chap. VII) had clearly read this letter 
and proposed a venturi with a contraction ratio of 0.7106, but it is 
doubtful whether it was flown.

In Europe, at any rate, there were other things to be done in 1940 
and there the matter rested until early 1952 (Kendall, 1952), when 
the matter was revived. Hugh Kendall's system used bulges on the 
fuselage sides to provide the suction and, since he said he had not 
read Kantrowitz, this made his design a remarkable invention. This 
arrangment suffered from the drawback that, due to local changes in 
the curvature of wooden fuselages, every installation had to be 
individually calibrated. At about the same time, I produced a different 
device, with the suction provided by a venturi as suggested by 
Kantrowitz (whom I hadn't read, either), although I did know about 
Hugh Kendall's experiments. This had the advantage that, having settled 
on the proportions of the venturi, that was the end of the calibration 
process. (Irving, 1952). The venturi was of quite a complex shape: 
downstream of the throat, there was a sudden enlargement in the 
bore, so that one could be a little more carefree than Kantrowitz in 
selecting the minimum diameter, and at its rear end there was an external 
disc to reduce its sensitivity to yaw (Irving, 1952). To this day, there are 
pirated mini-versions of this tube being made in Germany. The 
external disc was borrowed from a German wartime idea, so the 
whole thing was something of a pastiche. This was the British team's 
"secret weapon"   a phrase which was still popular at the time   for 
the 1952 World Championships and two machines were suitably 
equipped, one with Hugh Kendall's device and another with mine. 
As it happened, we won the championship, and Philip Wills later wrote 
"...the most important advance in recent years is in the refinement of 
the variometer" (Wills, 1952).
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There matters rested, in gliding at any rate, until 1955 when a totally 
different device was invented (Vogeli, 1955) where the total energy effect 
was obtained by means of a diaphragm pressurized by the pitot, so 
that increasing pitot pressure effectively decreased the size of the capacity. 
Whilst this was entirely internal, it suffered from the problem that its 
calibration did indeed vary with height (Irving, 1956), although, as usual 
a single device worked quite well over an appreciable range of height.

Since there are relatively few about, we will not indulge in a detailed 
description.

Then somebody in Germany noted that the pressure coefficient on 
the downstream side of a circular cylinder at Reynolds numbers of about 
10,000 is quite close to -1.0 (Goldstein, 1938), leading to a device 
incorrectly called the Braunschweig Tube. The tube had two slots on its 
downstream side, subtending a total angle of 110° at its centre with its 
end perpendicular to the airflow. This was all very well except that a 
small slip with the saw could appreciably alter the entire pressure 
coefficient. Also, there is a marked end effect, not covered in the original 
tests.

In 1976, a further improvement occurred (Nicks, 1976). The final 
tube was now at an angle of 70% to the flow and a single 1/16" hole 
was located 3/8" from the end of the 3/16" tube. At the same time, I was 
conducting rather similar experiments at Imperial College, which indicated 
that the "Braunschweig" tube produced about 11% too much suction 
and Oran Nicks' about 12% too little (Irving, 1978). It is only fair to say 
that the original Nicks tube was not exactly replicated, so these results 
may not be quite correct. In my tube, assisted by a student, we tracked 
down the positions at which the trailing vortices separated from the tip, 
and provided two appropriately located holes.

Here, there was a total angle of 100° between the holes, which were 
1/16" in diameter and 3/8" from the end of a 1/4" tube. (See Fig. 5.2.) 
The results were very good indeed, and such tubes have been in 
production ever since. Incidentally, the point with the 70% tube was 
that it behaved approximately symmetrically to both positive and negative 
changes of incidence. Again, numerous pirated versions are in circulation, 
few of which ever seem to have seen a wind tunnel.
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Two holes 1/16"dia

Fig. 5.2. A total-energy head.

While the gliding end of Total Energy was progressing happily, the 

chaps thinking about supersonic aeroplanes were not exactly idle; 

probably the first "official" mention in the UK was by Lush (1951). In 

the US, there were numerous documents: quite a good one, if you are 

thinking of programming a flight in Concorde, is Meile and Cappellari, 
1959.

There is rather more to Total Energy than might be thought from 

Kantrowitz's letter. If we consider Eq. (4.1), then if we multiply it by V 
and put T= 0, we get:

-mgV sinF -DV = mVdV/dt . (5.1)

Now V s'mF is the rate of climb, db/dt (remembering that Fis 
positive in the nose-up sense), so we get:

or

-DV = mg db/dt + 1 mdV 2/dt

-DV = mg(dhe/dt).

(5.2)

(5.3)
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Here, he is the "Energy Height", h + V 2/2g, i.e., the Total Energy 
expressed in height terms,corresponding to Kantrowitz's definition. This 
expression means that its rate of change depends on the drag power, 
whether or not we are concerned with steady flight. Also, since the 
polar of a sailplane is, in effect, a plot of DV against V, it is really a curve 
of rate of change of total energy, the load factor in this case being 
substantially unity.

Kantrowitz's letter may not have made the description of the total 
energy variometer entirely clear. If a sailplane is flying at a steady speed 
in still air, a variometer connected to the static pressure source will 
show a steady rate of sink. If the pilot now causes the speed to vary by, 
say, 5 knots on either side of the mean speed, the variometer will show 
a varying rate of descent. As the speed increases or decreases, the rate 
of descent will increase or decrease, due to the interchange of kinetic 
and potential energies. With a total energy variometer, when the speed 
is increasing, the static pressure increases more rapidly than when flying 
at a steady speed, but the suction, —jpV 2 , is also increasing and cancels 
out the augmented rate of increase of static pressure ps . When flying at 
or near the minimum drag power speed, i.e., near the speed for minimum 
rate of sink, this cancelling process will be nearly exact, and the variometer 
will show something very close to the rate of sink at the mean speed. 
From Eq. (5.3), the variometer will show the rate of change of energy 
height at any speed, but the effect of variations in speed will become 
rather more marked as the speed increases simply because the drag has 
increased. It is often thought that a "perfect" total energy variometer will 
show an unchanged reading during a sharp pull-up, but not so. The 
increased load factor will produce a corresponding increase in drag, 
and hence the variometer will show a temporary increase in rate of 
sink.

There is, in fact, an error in Kantrowitz's letter, where he refers to 
"the altitude pressure -pgb". Now the local atmospheric pressure is not 
as he states, but it is true that dps = -pgdb. This cannot be integrated to 
givep5 = -pgb, because p is itself a function of h. However, the variometer 
deals with the rate of change of pressure, not the actual pressure so, as 
it happens, this mistake has no effect on the final outcome.
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Finally, it follows from all of the above that he is the maximum height 
which would be attained if, at any instant, the sailplane were pointed 
vertically upwards, neglecting drag.

It also follows from Eq. (5.3) that it is simply not worth having a 
variometer dealing with normal static pressure, since in normal flight, 
we are never interested in rates of change of true height. The only 
exception to this would be if we desire to safeguard the total-energy 
probe from getting iced up.

In all of the foregoing, we have implicitly assumed that the 
local air density is constant. More generally, if we seek to determine 
d(ps - \pV 2 }/dt, which is what a variometer does although 
the process may be disguised in various ways, there is an additional 
term   j V dp/dt, which may be shown to have the approximate value 
0.57 M2 dh/dt in the troposphere. The constant increases to 0.70 in 
the stratosphere, where M is the Mach number (Welch and Irving, 
1977). Since sailplane Mach numbers rarely exceed 0.2, this term 
is negligible and, in any case, the total energy sensor would 
probably produce rather greater errors in the presence of significant 
Mach numbers.

Electric Variometers

To the best of my knowledge, electric variometers were first 
mentioned by August Raspet (Barringer, 1942), but the first practical 
type was devised by P.G. Davey et al. at Cambridge University (Davey, 
I960), the original problem being to avoid the inevitable inertia, both 
mechanical and aerodynamic, of the mechanical device. In fact, the 
problem with the early specimens was to make them less sensitive: 
they tended to respond to a door being opened at the other end of the 
building.

The response of most variometer systems will be exponential. If the 
rate of sink, initially zero, instantly becomes Vs , then, t seconds later, the 
indication of the variometer will be something like:

Vs^=Vs [l-exp(-f/r)]. (5.4)
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Here, T is a time constant for the system and is typically about 
3.5 sec for a mechanical system. The implication of this equation is 
that the instrument will never actually read the true value of Vs , but the 
pilot's impression of the lag will be something like the time taken for 
the indication to show say 90% of the final V5 . This time is about 
2.3 T, or around 8 sec for the mechanical system. Some of this is due to 
heat transfer effects within the capacity, which can be reduced by 
filling it with loosely packed non-corrodible wire wool which, although 
of negligible volume compared with that of the air, will have a large 
relative heat capacity. The temperature thus stays almost constant as the 
pressure changes.

A reasonable electric system can be made with a time constant of 0.5 
to 1.0 sec: anything less and it starts to display irrelevant 'noise', thus 
confusing the pilot. Indeed, it will often be necessary to increase the 
natural time-constant of the electrical device, by inserting a short length 
of capillary tube in series with the transducer. For example, if the capacity 
has a volume of 420 cm3 and the capillary has a bore of 0.02", then the 
time constant will be increased by about 1 second per inch of capillary 
at sea-level. The time constant is inversely proportional to the fourth 
power of the bore.

The simplest type of electric variometer uses a pair of thermistors in 
a pipe connected to a flask and heated by passing an electric current 
through them. Thermistors have a large negative coefficient of resistance 
and hence, if there is a flow into or out of the flask, the upstream 
thermistor will be cooled more than the downstream thermistor and its 
resistance will accordingly be greater. If the thermistors are incorporated 
in a Wheatstone bridge and the output is suitably amplified, the final 
output will indicate both the magnitude and direction of the flow. In 
practice, a modern electric variometer is considerably more complicated 
than this model suggests, but the general principle is much the same. It 
is clear that the obstruction experienced by the flow will be markedly 
less than in a mechanical variometer, there are no moving parts and, 
since the final output is an electrical signal, it is easy to manipulate it so 
as to work a second indicator, to give the average over a desired length 
of time, and use it in the manner suggested in Chapter 8. Also, whereas
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a mechanical variometer tends to display something very close to the 
true vertical speed, an electrical instrument shows (true vertical speed) 
xp", where n is an index between 0.8 and 1.2. Hence, the output of an 
electric variometer will also require some adjustment to indicate 
"equivalent" vertical speed.

There is also a type of variometer which does not require a capacity. 
In this case, the atmospheric pressure is determined by a suitable 
transducer, and its output is differentiated electrically to give rate of 
climb or sink. All electrical instruments can be made to display rate of 
change of energy height by connecting them to a source of ps - ±pV 2 , 
but in some cases, the total energy input is arranged electrically and no 
special head is required.

Air Mass Movement

It is also possible to arrange for a variometer to display air mass 
movement, by subtracting something close to the rate of sink of the 
sailplane at the prevailing speed from the variometer indication, thus 
conferring an advantage explained in Chapter 9. This process can be 
taken even further: to anticipate somewhat, the sailplane should be 
flown at a particular speed, depending on the circumstances such as 
rate of sink of the air mass and the strength of the thermals. It is possible 
to arrange a variometer to display simply whether the sailplane is being 
flown at the correct speed and, if not, whether the machine should be 
flown faster or slower.
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Chapter 6

OTHER INSTRUMENTS

General

For all sailplanes, JAR-22 requires that they carry an airspeed indicator 
and an altimeter. For powered sailplanes, a magnetic direction indicator 
is also required and in addition, an accelerometer in fully-aerobatic 
sailplanes. These, in effect, represent the minimum instrumentation for 
safe flight but at present Belgium and France also require a variometer, 
a magnetic direction indicator and a sideslip indicator for all sailplanes. 
These last amount to National Variations and at the time of writing there 
is a strong tendency to remove them. This is not the place to debate 
whether the job of JAR-22 is to define the minimum instrumentation 
required for safe flight, or what is required to make a sailplane a viable 
soaring device, but in the present context it is clear that we require at 
least an ASI, an altimeter, and a variometer so that soaring flight can be 
conducted to the best effect. The variometer has been considered in the 
last chapter, and further detail is added in chapter 8. Here we will 
consider the other instruments.

The Altimeter

The ordinary panel instrument consists of an absolute pressure gauge 
with a variable datum, calibrated so as to show height in a Standard 
Atmosphere. This device, when calibrated in English (or American) units, 
is a very satisfactory instrument, since the largest hand shows 1000ft 
per turn: a most satisfactory sensitivity. Here, we should spare a 
thought for the poor unfortunates who have to deal with metric 
instruments: either one has 1000 m per turn, which is far too coarse, or
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500 m per turn, which tends to lead to ambiguities when heights such 
as 1740 m are involved.

Normally, an altimeter is coupled to the aircraft's static source and 
for all practical purposes gives height above the datum in a Standard 
Atmosphere. If it were coupled to the total energy source, it would give 
"energy height" but this seems a complication leading to needless 
ambiguities. There are times when it would be useful to have it set with 
its datum at 1013.2 mb, to define the heights of controlled airspace, etc. 
Short of having a second altimeter, which would be rather difficult given 
the restricted panel space of the average sailplane, the best one can do 
is to make a note of the datum setting and set its datum to 1013-2 mb 
when required. This not totally academic, since the height of the bottom 
of controlled airspace can vary by several hundreds of feet.

There are other methods of defining height. (Incidentally, is it not 
remarkable that whilst JAR-22 mentions a magnetic direction indicator, 
it does not specify the method of operating the altimeter?) Most electrical 
final glide indicators will use a transducer to provide the height signal, 
as doubtless do the electric barographs. And most GPS devices give a 
height indication relative to some fixed datum, a matter of geometry 
rather than atmospheric pressure, and not very reliable. The pressure 
instrument seems likely to be with us for some time.

The Airspeed Indicator

The standard panel instrument is a differential pressure gauge, one 
side of which is connected to the pitot source, subjected to a pressure 
ps + j pV 2, and the other to the static ps. The difference, in an ideal 
world, is thus the "dynamic" head, which is easily converted into speed 
units at sea level in a Standard Atmosphere. However, this is not a 
perfect world and our instruments will suffer from "pressure" or 
"position" error. Broadly speaking, the pitot should not suffer from 
such errors, unless it is faired into the nose or located in the wake of a 
total energy tube. The static source will often suffer from an error, 
although this is often small. It is because the static source is usually a 
pair of small holes in the fuselage, mounted symmetrically on opposite 
sides so that the effects of small amounts of sideslip is cancel out: but
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they will rarely convey exactly the local static pressure, simply because 
the presence of the fuselage itself and other parts of the sailplane tend 
to produce slight errors.

The total pressure error can be measured by connecting a second 
ASI across a pitot of undisputed accuracy and a trailing static. The latter 
usually consists of a glass-fibre cone about 12" in diameter on the end 
of an 80 ft plastic pipe, about 5/16" or 3/8" in diameter so that it trails 
well clear of the sailplane. The static holes are drilled in a section of 
tubing about 3 ft upstream of the cone in an axially symmetrical fashion, 
the diameter of this piece of tubing being the same as that of the plastic 
pipe. The sailplane takes off with the trailing static already deployed, 
which is markedly more convenient than filling the cockpit with tubing, 
and the whole thing is jettisoned before landing, the cone being light 
enough to avoid significant damage. This is markedly more convenient 
than the older bomb-like device. The error is obtained by comparing 
the aircraft and trailing static ASI's, remembering to calibrate both 
instruments beforehand.

Jar-22 specifies that the Flight Manual must contain a curve of 
Equivalent Airspeed as a function of Indicated Airspeed and the maximum 
difference between the two must not exceed ± 8 km/h or ± 5%, whichever 
is greater, throughout the speed range 1.2 Vs to V^ with the wing flaps 
neutral and airbrakes closed. Now the various design speeds, such as 
VD, are expressed in terms of HAS, but the corresponding flight speeds 
must be expressed in terms of IAS. Thus, if the design dive speed VD is 
150 knots (HAS), then the Demonstrated Dive Speed must lie between 
1.0 and 0.9 times VD , i.e., between 150 and 135 knots HAS. Now suppose 
that the EAS exceeds the IAS by 5 knots at such speeds and the courageous 
test pilot takes the sailplane to 142 knots IAS. Then his EAS will have 
been 147 knots. However, V^must not exceed 0.9 times VDF , or 132.3 
knots EAS. This then becomes 127.3 knots IAS, which would actually be 
rounded down to 127 knots.

In practice, this rule seems to be fairly widely misunderstood: many 
current machines have at least two pairs of static holes, and it would 
indeed be surprising if they both had the same pressure error. 
Nevertheless, there is only one curve published in the Flight Manual.
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Similarly, a remarkable array of sailplanes seem to have never-exceed 
speeds of 135 knots IAS, and indeed the ASI is colour coded to indicate 
this. However, it is worth saying that some current sailplanes have 
negligible pressure errors.

Effect on Best Speeds to Fly

If the pressure errors are significant then the calculations of Chapters 8 
to 11 should be carried out in terms of HAS. For example, if the polar is 
stated in terms of IAS, it should be corrected to read EAS before applying 
the appropriate construction. Having thus obtained the best speeds to 
fly for various thermal strengths, for example, these are then corrected 
back to IAS for use by the pilot.

Other Errors

Errors in the static pressure will affect not only the airspeed indicator 
but also, in principle, the altimeter. However, for sailplanes, these errors 
are normally negligible. There is also Compressibility Error, which afflicts 
rather faster aircraft because the relationship between the pressure 
difference across the ASI and the indicated airspeed depends not only 
on the latter but also on the Mach number, and there can be an interaction 
between the Pressure and Compressibilty errors as well. Fortunately, 
we do not need to concern ourselves with such matters.

Finally, there is a source of much misunderstanding: the reduction 
of VNE with height to avoid flutter. JAR-22 is somewhat coy about flutter 
and at present it is best to consult OSTIVAS, which states that sailplanes 
must be free from aeroelastic effects up to VDF at heights up to 3000 m 
and at selected speeds up to VDF at greater altitudes. A footnote in 
the latter case states that speeds equivalent to the True Airspeed 
corresponding to VDF at 3000 m are normally found to be safe. Compliance 
must be demonstrated by flight flutter tests as close as is practicable to 
3000 m and not less than 2000 m. The damping must be adequate and 
must not decrease rapidly as VDF is approached. In addition, analytically 
determined flutter speeds must not be less than 1.2 VDF at altitudes up to 
3000 m and 1.2 times the "selected speeds" at greater altitudes. In practice,
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most machines have a constant IAS limitation up to 3000 m (or 10,000 ft) 
and a limitation corresponding to a constant TAS at greater heights, 
leading to a marked reduction in IAS.

The point of this situation is that there is no way of discussing flutter 
in simple physical terms, because it almost certainly involves controls in 
modern sailplanes. (See, for example, Chajec (1993)0 Putting it rather 
crudely, if we consider a wing and aileron, the aileron being unbalanced, 
in that its centre of mass is behind the pivot point, then when the wing 
is accelerating downwards it will tend to leave the aileron behind and 
this will produce an aerodynamic force tending to reinforce the motion. 
In practice, the situation is obviously more complicated than this very 
simplified picture would suggest and the analysis becomes quite difficult. 
There have been cases in which a preliminary calculation suggests that 
the flutter speed will be even less than the constant TAS rule would 
suggest, but a certain amount of mass balance, thus moving the centre 
of mass of the controls forward, has so far sufficed to get the flutter 
speed to more than 1.2 times the TAS limit.

To summarize, a constant TAS rule at altitudes above 3000 m is not a 
law of nature but it simply gives a rule which, so far, has been very 
satisfactory. The corollary is that it is vital to ensure that mass balance 
weights are always properly attached.
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Chapter 7

THE SAILPLANE IN THE ATMOSPHERE

Sailplanes rely on motions of the atmosphere to achieve sustained 
flight and the object of this chapter is to consider some of these motions. 
Thermals were known to the Wright Brothers in 1901, but were first 
really discovered in 1921 by one William Leusch at the Wasserkuppe. 
Professor Georgii was eventually to start a programme in 1928 to 
investigate the lift under cumulus clouds. Such lift was first exploited by 
Kronfeld at the same time and within a year he had achieved a distance 
of 85-5 miles, flying his new sailplane, the "Wien". By 1930, he had 
taken a variometer with him and was able to locate the invisible rising 
air: for him, and many another pilot, the way was open to exploit it. 
The first genuine thermal soaring,, without the help of hills or 
thunderstorms, took place in the United States under the auspices of an 
American pilot, A. Haller, and Wolf Hirth. So thermal soaring is only 68 
years old.

Thermals in the Laboratory

Many experiments were carried out in the then Department of 
Meteorology, Imperial College, in the 1950s (e.g., Scorer (1956) and 
Woodward (1956)) which served to explain many of the prevailing beliefs 
about thermals. In Scorer's experiments, the "thermals" consisted of 
bubbles of salt solution released near the top of ordinary water in a 
suitable chamber. The salt ensured that the density of the "thermal" 
exceeded that of the fresh water, and it was rendered visible by inserting 
a white precipitate. The density of the surrounding water was uniform, 
corresponding to an adiabatic lapse rate in the real atmosphere. The
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Fig. 7.1. A "vortex ring" thermal. The lengths of the bubbles indicate the local air 
velocities.

actual density of the salt solution was of little consequence: all that 
happened was that the greater the density difference, the greater were 
all the velocities. Motions behind the bubble were small and the trailing 
material was very tenuous. The general motion was very like that of a 
vortex ring and the most interesting feature of such a flow is that the 
vertical velocity in the centre is greater than the rate of rise of the 
thermal. (See Fig. 7.1). As long as this difference in velocity exceeds 
the sinking speed of the sailplane, it will rise in relation to the thermal. 
It will continue to rise until the difference in vertical velocities is equal 
to the rate of sink and will then continue upwards at the rate of rise of 
the bubble as a whole. A consequence is that sailplanes of greatly different 
performances will eventually all climb at the same rate   the rate of 
ascent of the bubble as a whole   but with higher performance machines 
towards the top of the stack.

Betsy Woodward expanded this picture by considering the velocities, 
both vertical and horizontal, within such a thermal. She also took into 
account an effect proposed by Goodhart (1956), to the effect that circling 
in an outflow is to increase the rate of sink, and in an inflow to decrease 
it. This analysis further confirmed various observations made by pilots.

It is worth noting that these "thermals" represent but one type, and 
indeed Betsy remarks that "It is felt that a thermal leaving the ground is 
generally in the form of a "column", i.e., after a short time its vertical 
dimensions are greater than its horizontal..., Eventually the column 
becomes detached from the ground and we may call it a "sausage".
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Fig. 7.2. Thermal profiles according to Konovalov. The slight asymmetry may be due to 
the instrumentation.

Because mixing with the surrounding air takes place primarily at the top 
of the "sausage", the tail will rise in relation to the top and eventually 
we will have an isolated thermal. In these experiments, we are looking 

at thermals in a substantially neutral atmosphere, and it would be 
surprising if there was not a considerable variety of thermal types 
associated with other types of atmosphere.

Thermals in Practice

Simultaneously, many experiments were carried out to try to 
determine what thermals were really like, particularly from the point of 
view of the sailplane pilot. Perhaps the best set of results was obtained 
by the Russian meteorologist D.A. Konovalov (1970), based on 377 
traverses of thermals in Estonia carried out by a Blanik sailplane and a 
Yak-12 light aeroplane. Two basic types of thermals were identified: 
type "a" containing several maxima with depressions in between and 
type "b" with one pronounced maximum. (See Fig. 7.2.) The cross-section 
of type "b" is almost exactly triangular whilst that of type "a" shows a 
much wider region of strong lift. An attempt was made to relate the type 
of thermal with the vertical gradient of temperature in the lower 300 m 

of the atmosphere, from which it seems that if the gradient is roughly 
-0.8°/100 m, both types occur with the same frequency. At lower values 
of the gradient, type "b" is the more common and at higher values type 
"a" is prevalent, leading to the supposition that type "b" represents the
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original element of convection, several of which converge to form type 
"a" when convective conditions improve. Whilst these results convey a 
good air of verisimilitude, we must remember that they were all taken 
in a small area of the Baltic state, and may not be representative of 
elsewhere.

We would also expect that what goes up in one place must come 
down somewhere else, and hence we would expect to find downdraughts 
between the thermals. This has been investigated by Johnson (1978), 
who concluded that in Texas the average apparent inter-thermal 
downdraft strength is roughly one-tenth of the gross thermal strength 
and that the average thermal height is roughly one-tenth of the thermal 
spacing. There was, of course, considerable scatter in these results. 
These results show that a sailplane with an effective inter-thermal glide 
ratio of 20 or better has a high probability of reaching the next thermal 
at a sufficient height to climb away. A glide ratio of 10 provides a 
probability of less than 0.5 that the next thermal will be reached. Johnson 
remarks that"... the modern sailplane's 40 to 1 capability provides their 
pilots little excuse for landing prematurely under normal convective 
conditions".

Mathematical Descriptions

These are required for two purposes: to facilitate handicapping and 
to provide a picture which corresponds reasonably closely to reality, 
thus enabling designers to "fly" their concepts under something like the 
conditions which actually prevail. There is no need for both sets of 
conditions to apply simultaneously, and indeed they frequently do not. 
It is obvious that whatever model is chosen it should have a smooth 
gradation of velocity with distance from the axis since, in a real 
atmosphere, turbulence and viscosity will tend to prevent the occurrence 
of sharp steps in both the velocity and velocity gradient. A more elaborate 
requirement is that the velocity distribution should be such that the 
principle of continuity is satisfied (i.e., there should be regions of down- 
draught associated with the up-current, so that there is no net transport 
of the atmosphere into outer space or through the Earth). The vertical 
velocity will then taper off to zero at large distances from the axis, but if
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we are only interested in conditions fairly close to the core, this 
requirement need not necessarily be simulated.

Power-Law Velocity Distributions

These are purely mathematical idealisations, with no physical 
justification except that they satisfy the first of the above requirements, 
close to the axis and can provide realistic results if the numbers are 
appropriately chosen. They assume an expression of the following type:

where VTo is the vertical velocity on the axis, where r = 1 , and R is the 
"thermal radius", i.e., the value of r at which VT = 0. The index n is 
conveniently taken to be an integer. If n = I , the thermal is triangular, 
and it therefore has a discontinuity in velocity at r= 0 which, for reasons 
explained above, is unlikely to be realistic. However, such a thermal is 
not too unlike Konovalov "a", which can therefore be regarded as having 
an index n slightly greater than 1.0. Putting n = 2 gives a parabolic 
profile, as commonly adopted for simple analyses. For example, the 
thermal used for EGA handicapping purposes has n - 2, VTO = 4.2 knots 
and#= 1000 ft. It therefore corresponds to:

Vr = 4.2[l - (r/1000) 2 ]. (7.2)

Other Parabolic Thermals

In Germany a more general expression has been adopted (Quast, 
1965):

VT = ar2 + br + c (7.3)

which, by a suitable choice of the parameters a, b and c, can be used 
to describe a strong or a weak thermal, or a wide thermal. The strong 
thermal has a core strength of about 6.2 m/s whilst the weak one is 
about half this strength. Both have a radius, where the up-draught velocity 
is zero, of about 120 m. The wide thermal has a core strength of about 
4.6 m/s and a radius of about 160 m. These thermals are principally
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used in determining the performance of a given sailplane in various 
thermals, whereas the British device gives a single figure of merit for 
handicapping purposes.

Spherical Bubbles

One concept of a thermal, as we have seen, corresponds to a bubble 
ascending through the atmosphere. If we asume the bubble to be 
spherical with no mixing at its surface, then the vertical velocity profile 
will be given by;

c /o

Vr/Vro = [ 1 - ( r/R ) 2 ]/ [ 1 + 2 (r/R ) 2 ] . (7.4)

This may look fairly plausible, but leads to a large region of low 
vertical velocity towards the outer regions. The velocity gradient up to 
about r/R = 0.5 is fairly close to parabolic and the above expression 
corresponds to a "doublet" located at the centre of the sphere. The 
above expression only defines the shape of the vertical velocity 
distribution and is independent of height relative to the centre of the 
bubble. Strictly, it does not apply in the equatorial plane of the bubble, 
since the doublet causes the vertical velocity to become infinite at the 
centre. Also, R is not the radius of the bubble at the section under 
consideration, nor is Vw the rate of ascent of the bubble as a whole. 
Further information may be found in Batchelor, 1967, Chapter 7.

Another type of spherical bubble is "Hill's spherical vortex". This 
was adopted by Larrabee, 1974, to consider the behaviour of a sailplane 
in a thermal, and is somewhat akin to the vortex ring concept, except 
that the vorticity is distributed over the whole interior of the spherical 
bubble according to a particular law. In the simpler bubble considered 
above, all the vorticity is concentrated at its centre. The vertical velocity 
distribution within the bubble is parabolic, again lending some credence 
to this simple distribution, and that outside will be the same as for 
the previous spherical bubble, with the tangential velocities inside and 
outside matching at the surface. This leads to a discontinuity in velocity 
gradient at the surface. Larrabee was of the opinion that its vertical
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velocity distribution matched quite closely that observed by Woodward. 
Again, see Batchelor for more details. Both of these types of spherical 
bubbles satisfy the principle of continuity.

A Modified Parabolic Distribution

A velocity distribution proposed by Gedeon (1972), for the purpose 
of analysing "dolphin" flying was of the form

VT /VTO = [l - (r/R)2 ] exp[-(r//?)2 ] . (7.5)

This gives an expression rather similar to the spherical bubble and 
satisfies the continuity requirement. It has no basis in theory or in 
experiment but is simply a plausible-looking mathematical expression. 
However, it is useful in the analysis of cloud street flying, since once 
continuity is satisfied, any number of such thermals of assorted strength 
may be strung together with arbitrary distances between the cores.

General Remarks on Thermals

The above remarks on the theoretical shapes of thermals are all very 
well and the EGA handicapping system seems to work quite satisfactorily: 
at all events, there seem to be no severe complaints about it. But it does 
leave some fundamental questions unanswered. Why, in particular, have 
so few measurements been made of real thermals? The trouble is that 
the structure of thermals is mainly of interest to the glider pilot; to other 
pilots, they are simply turbulence. The measurements we require are 
extremely difficult to make, due to the variability and invisibility of 
thermals, instrumentation, and the organisation required. The mind 
boggles at the organisation required for Konovalov's 377 traverses of 
thermals. For example, Milford (1972), tried flying through thermals in 
an instrumented two-seat sailplane and found that few of them showed 
the sorts of structure assumed above. However, it is worth saying that 
the vertical response of the sailplane was not particularly well organised 
by current standards and the thermals were mostly rather weak. However, 
it was found that the temperature excesses were typically 0.5°C at 300 m
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above the ground, falling off with height until they could be zero at 
1000 m, even in good British conditions. The bouyancy appears to be 
then due to changes in humidity.

Cloud Streets

These, together with many other interesting features of thermals, are 
discussed by Scorer (1978). Cloud streets consist of cumulus arranged in 
fairly straight lines roughly along the wind and are usually spaced at 
about twice the cloud base height apart. They are the glider pilot's 
dream, provided the desired track is not too far from their direction, 
and satellite pictures show cloud streets encompassing whole countries. 
However, they are rather rare, and the more usual observation is that 
the thermals are arranged in a rather random fashion. There are occasions 
when thermals are "blue", i.e., the condensation level is above the top 
of the convection, and then the sailplane pilot can fly for considerable 
distances without encountering any lift. He is flying between the rows 
of thermals, which are invisible, but a small deviation to either side will 
put him in rising air.

Waves

Waves are large-scale disturbances produced by ground features when 
a wind is blowing past them. Their effects were known long before the 
nature of the flow was understood and many have local names, such as 
the Helm Wind. The phenomenon is treated extensively in Scorer (1978).

Waves were originally thought to be rather rare, but are now known 
to be fairly common, to the extent that the author and many other pilots 
have soared in a wave, in the vicinity of Lasham, where no significant 
upwind feature was visible. If conditions are suitable and steady, the 
wave system will remain fixed relative to the ground feature which 
produces it and it may extend to many times the height of the feature. 
The conditions favourable for wave formation are extremely various 
and when coupled with the wide variety of ground features, an almost 
infinite variety of waves exists. When the conditions are not steady, the 
geometry of the wave pattern will change accordingly. In two dimensions,
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Scorer has shown that, for a single obstacle of a given height, the 
amplitude of lee waves is a maximum when the half-width of the obstacle 
is about I/TT times the wavelength. It is commonly found that the up- 
going part of a wave is uncannily smooth, whilst the down-going part is 
often extremely turbulent.

In three dimensions, the picture is even more complicated. A single 
conical mountain will often produce a pattern like that due to a boat 
moving through water. If mountains are arranged in series, the patterns 
may tend to reinforce one another, or to cancel out. West (1996), has 
published some results showing the interference patterns due to 
ridges at various alignments, some of which are very complicated. Further 
remarks on flying in waves are to be found in Chapter 11.

The Wind

The wind obviously affects the behaviour of sailplanes in respect to 
how the pilot deals with cross-wind flights in the presence of cloud 
streets, the final glide, wave-flying and ordinary hill-flying. Also, it is 
important to remember the wind gradient and gustiness when landing. 
Some of these topics will be considered in the appropriate places, but it 
is worth mentioning the investigation of Crawley and Schmanske (1993), 
who considered the flow over two models of ridges in the Wright Brothers' 
wind tunnel at MIT, which included variations in incoming flow angle, 
ground roughness and the earth's boundary layer. Previous investigations 
had been confined to simple potential flows at right angles to two- 
dimensional ridges represented in some simple fashion. For example, if 
the ridge is semi-circular, the line of optimum lift is at 45°, extending 
forwards from the ridge. This is no longer true under more realistic 
conditions, and the reader is referred to the original paper for a discussion 
of all the conditions tested.

The Standard Atmosphere

To provide an agreed basis for the calibration of aircraft instruments 
and for carrying out performance calculations, it is necessary to define a 
standard atmosphere. This may not have much relation to a real
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atmosphere in which soaring can be conducted, but it is important to 
know that it exists. A number of such standards have been derived from 
1920s onwards: those in current use are the US Standard Atmosphere, 
1976, the ISO Standard Atmosphere, 1973 and the ICAO Standard 
Atmosphere, 1964. They are identical up to a height of 32 km.

The Standard Atmosphere is intended to represent the long-term 
average properties of the atmosphere at a latitude of 45°. It incorporates 
certain idealisations: for example, the air is assumed to be a dry perfect 
gas. Taking accepted standard sea-level values of sea-level pressure and 
temperature, and assuming a suitable lapse rate, rounded off to a 
convenient value, the properties of the atmosphere can be derived as 
functions of height, as tabulated in the Appendix.

In a uniform gravitational field, the computations involved in defining 
a Standard Atmosphere would be quite simple. However, the acceleration 
due to gravity is a function of height and latitude. The simplest 
assumptions (a spherically symmetrical non-rotating Earth) would suggest 
that g varies inversely as the square of the distance from the Earth's 
centre. In practice, rotation of the Earth and a departure from spherical 
symmetry render the relationship more complicated. For the purpose of 
defining a Standard Atmosphere, the independent variable loosely termed 
"height" above is the "geopotential altitude".

If the geopotential altitude is Z then the geopotential altitude is h, 
where

b=l(g/g0 )dZ (7.6)

and the integral is taken from 0 to Z. In this expression, g is a function 
of Z at 45° and g0 corresponds to Z = 0. The geopotential altitude is 
therefore an equivalent altitude in a constant gravitational field g0 \ a 
body, or a particle of air, at ( /?, £0) has the same potential energy as it 
would have had at (Z, g). For the purpose of aircraft performance 
calculations, it is also convenient to work in terms of geopotential altitude 
since the aircraft itself can be regarded as operating in a constant 
gravitational field.

Tabulated data are expressed in terms of geopotential altitude as 
the independent variable and were originally calculated in metric units.
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The tabulated data in English units are derived by use of the usual 
conversion factors. As one would expect, there is little difference between 
h and Z in the lower atmosphere. At the tropopause, h = 11000 m and 
Z = 11019m.

On a given day, the actual atmosphere differs from standard. When 
the performance of a sailplane is measured under non-standard 
conditions, it is necessary to correct the performance to standard 
conditions, for which purpose the departures of the atmosphere from 
standard must be known, e.g. from radio-sonde ascents. It is particularly 
important to do so if the performance is measured on different days 
with different conditions and if one is measuring the performance of a 
powered sailplane with little excess of power, it will be even more 
important to do so.

Since an altimeter is basically a pressure-measuring instrument 
calibrated in accordance with the Standard Atmosphere, the pilot normally 
deals with "pressure height" (i.e., the geopotential altitude which, in the 
Standard Atmosphere, would correspond with the local air pressure at 
the sailplane's actual location). In effect, this is the reading of a perfect 
altimeter, free from errors due to its installation in the sailplane. Official 
height records are conventionally pressure heights.
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Chapter 8

FLYING IN THERMALS: 
THE CLASSICAL ANALYSIS

The Optimum Rate of Climb

In Chapter 4, the equations of motion of a sailplane were obtained 
and in Fig. 4.5 plots of rate of sink for various angles of bank were 
deduced. It is then a simple matter to find the condition at which the 
rate of sink is a minimum: for each angle of bank there will be a speed 
at which the rate of sink will be a minimum. Incidentally, in this analysis, 
all speeds are "equivalent" unless stated otherwise. This leads to the 
upper curve of Fig. 4.5. (The lower curve corresponds to a different 
wing loading).

We now take a curve of rate of ascent of the air against radius for 
whatever thermal we wish to consider. In this case, we will look 
at the "British Standard Thermal", corresponding to Eq. (7.2). 
This curve is plotted in Fig. 8.1, and subtracted from it is the rate of 
sink at w = 6.7 lb/ft2 , so that the lower curve corresponds to the rate of 
climb at various angles of bank and the best speed. It will be seen 
that the optimum angle of bank is about 35°, the corresponding speed 
is about 49 knots and the best rate of climb is 2.3 knots. Here, it is 
assumed that the pilot is flying perfectly within this rather artificial 
framework.

In fact, we do not need to do all this tedious curve-plotting for 
the parabolic thermal. The optimum circling performance of a sailplane 
is entirely determined by the minimum rate of sink Vsmin and 
the corresponding forward speed Vms in straight flight. The optimum 
angle of bank 0 is then that which satisfies
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Fig. 8.1. The maximum rate of climb in a "British Standard Thermal". The optimum 
angle of bank is about 35° and the rate of climb is about 2.4 knots.

= 4 V VTo Smin (8.1)

The value of 0 so obtained is then inserted in the following equation 
to obtain the maximum rate of climb:

Vc /Vsadn = (vTo /Vsmin )[l - cosec
(8.2)

It is therefore possible to calculate the maximum rate of climb of 
any glider in a parabolic thermal. We will see what use we can make of 
this analysis later.

A Little History

For some time before the war, pilots were aware that one should fly 
faster in down-currents so as to traverse them quickly. Indeed, the 
construction to obtain the best gliding angle under such circumstances 
was well known. But what about the speed to fly so as to make the 
average speed as high as possible? In 1938, one Wolfgang Spate used 
tables developed during the previous year giving the best speeds between 
thermals, but neglecting down-currents. In the same year two Poles,
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L. Swarz and W. Kasprzyk, also published their results which now 
included the effect of air mass movement between the thermals. The 
Spate result was published in the UK by Philip Wills in 1940, using the 
pen-name "Corunus". This was more or less forgotten in the press of 
war and the next efforts were in the form of two letters published quite 
independently in the same copy of "Sailplane and Glider", in June 
1947. The authors were G.W. Pirie and E. Dewing, members of the 
Cambridge University Gliding Club. Pirie derived his result by physical 
argument, but Dewing waded straight into the mathematics and obtained 
the results quoted below.

His letter ends a little forlornly: "It is realised that the whole business 
is getting too complicated and this is only an ideal to be aimed at; but it 
should give a reasonable indication of the speed and direction most 
likely to give the best results". However, all was to change a couple of 
years later when Paul MacCready published a paper in the November 
1949 issue of Schweizer Aero Review, to be followed by a correction by 
Dr Karl Nickel in December, pointing out a minor confusion in the 
mathematics. The American version did not appear until the March/ 
April 1954 edition of "Soaring" when Paul MacCready published his 
paper on the "Optimum Airspeed Selector", presumably with slight 
corrections, since the formula attributed to him by Dr Nickel does not 
explicitly appear. This explained the now-familiar MacCready ring (see 
Chapter 9) and not just the version applied to linear variometers: he 
suggested a variant with different scales for various thermal strengths 
for use with non-linear instruments. So, whilst MacCready did us a great 
service in proposing his ring, the basic theory was around long before 
him. It would only be fair to refer to the theory as "The Classical Theory", 
and reserve mention of MacCready to the ring setting and an analogous 
process in electric variometer devices.

It is noteworthy that, in Dewing's letter and in Reichman's 
book (1978) the sequence is glide-climb instead of climb-glide. The 
argument, it is supposed, is that when you have finished a climb, it is 
behind you, so how can it affect the following glide? But it can equally 
be argued that when you have finished a glide, it is equally behind you 
so how can it affect the next climb? The fact of the matter is that the
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Fig. 8.2. An idealised section of a cross-country flight.

sequence does not matter at this elementary level, but putting the climb 
first seems more natural: you know what the average rate of climb was, 
and you can then control the glide accordingly, whereas with the opposite 
sequence the pilot is already being required to exercise powers of 
prophecy.

The Classical Analysis

The theory which follows can be regarded as the Classical Analysis, 
even if it differs in some minor features from the original. It has its 
limitations, some of them quite severe, but it is the basis of all subsequent 
optimisations and therefore needs to be considered rather closely.

The object of the analysis is to maximise the cross-country speed. 
This is obviously required for breaking speed records but it is also 
true for any distance flight, where the flight is often limited by the 
useful length of the day. We will initially consider only one climb-glide 
sequence, as shown in Fig. 8.2. The sailplane is assumed to climb from 
A to B with an average rate of climb Vc . Although we have seen how to 
maximise the rate of climb in the first paragraph of this chapter, we do 
not need to do so here: all we need to know is the average climb rate 
actually achieved in the thermal. Any gain in height at A, as one slows 
down from the previous glide, or loss at B, as one speeds up for the 
next glide, are taken into account in reckoning Vc . At B, the sailplane 
stops turning and flies straight to C at speed Vand rate of sink Vs . Also,
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Fig. 8.3. Construction to show the average speed attained.

C is taken to be at the same height as A and for the moment up- or 
down-currents between B and C are neglected. Also, both A and B are 
close to sea-level, so that the difference between true and equivalent 
speeds is negligible. This is, indeed, a very formalised element of a 
cross-country flight.

If the time spent climbing is tc then the height gained will be Vc tc . If 
the pilot glides from B to C in time tg then the loss of height will be tg Vs . 
Equating the gain and loss of height, it follows that

tg = Vc tc/Vs 

and hence the distance covered is

tg V =Vc tc V/Vs . 

The total time for the climb and glide will be

(8.3)

(8.4)

(8.5)

So, dividing the total distance by the total time, the average speed
is:

vav = v vc /(vs + vc ) (8.6)
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Fig. 8.4. Construction to show the maximum speed attained.

and the problem is then to choose V so as to make Kav a maximum, Vc 
being known.

Consider the construction shown in Fig. 8.3 superimposed on the 
polar diagram of the sailplane. From a point P, such that OP represents 
Vc to a suitable scale, a line is drawn to a point Q on the polar. Q 
represents the conditions Kand Vs during the glide. Triangles POR and 
PSQ are similar and hence the relationship between the various speeds 
corresponds to Eq. (8.6), if Vav is represented by OR. By a similar 
argument, the same average speed is obtained by flying at conditions 
corresponding to the point Q'.

It is immediately apparent that Vav is maximised by arranging for PR 
produced to be tangential to the polar, as in Fig. 8.4. The point T then 
represents the optimum speed to glide, Vopt , and OR represents Vmax , the 
maximum average speed. It is clear that any other gliding speed, 
represented by Q or Q', gives a lower average speed.

The condition corresponding to Fig. 8.4 is that, at the optimum gliding 
speed, the slope of the polar must have the value PS/PT or, in the 
symbols of the calculus, at V= Vopt :

VS + VC )/V, (8.7)

a result which could also have been obtained by differentiating Eq. (8.6). 
It will be seen in Chapter 11 that this is but one example of a more 
general construction.
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It is implicit in the above that either the horizontal distance AC or 
the height gained AB is fixed. In the former case the analysis tells us 
how to cover the distance AC as rapidly as possible. Once the rate of 
climb Vc is known, then the optimum gliding speed Vopt is also known 
and hence the gliding angle, Vs /Vopl . Then the height to be gained will 
be the distance AC multiplied by the gliding angle.

Conversely, if the height AB is fixed, in a similar manner we can 
calculate the horizontal distance AC. With a rate of climb Vc , the analysis 
now tells us how to cover the distance AC as rapidly as possible, although 
AC is now determined by the height of the climb and the rate of climb.

In practice, these considerations are seldom of much consequence. 
Consider the idealised case of a cross-country flight in which all the 
thermals are of the same strength but at different distances apart, but 
never so far that we cannot fly at Vopt whenever glides occur. (The 
sailplane can always be flown at some lower speed to obtain a better 
glide angle, at the expense of a lower average speed.) In any one glide, 
the final height will generally be different from the initial height. If we 
simply consider a single glide of this nature, as when taking off from a 
hill site and landing in the valley below, then an analysis similar to the 
above will show that the optimum speed is no longer Vopv However, if 
in the course of a substantial flight, we add together all of the climbs 
and all of the glides, we get back to something very close to the original 
construction. The difference will be that the initial and final heights will 
differ by the launch height, plus any difference if the flight does not end 
where it began. This effect will generally be negligible, except in the 
case of a short flight, say 100 km, performed by a very high-performance 
sailplane. Also, the only moment at which we need to consider the 
horizontal distance will be to decide how high we need to climb in the 
last thermal, for which see Chapter 9.

Effect of Down-Currents

We have already seen that there will be down-currents between the 
thermals, and these must obviously be taken into account in constructions 
for the best gliding speed. It really amounts to supposing that, temporarily, 
we have a worse sailplane, the sinking speed being increased by the
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Fig. 8.5. Construction to show the maximum speed attained in the presence of a down- 

current.

downdraught velocity. Therefore, we simply move the origin from O to 

O', as in Fig. 8.5, where OO' corresponds to ws , the downwards air 

velocity. The instantaneous value of V2V is now

Vav = (8.8)

and the criterion for maximising this quantity is that at V= V0 ,,

dV5 /dV = ( Vs + Vc + ws )/V. (8.9)

It may seem a little curious that whereas Vc is the average rate of 

climb for the whole thermal, ws is a quantity which changes from one 

moment to the next. I cannot think of a better way of explaining this 

than to use Karl Nickel's words: "Imagine the part of the flight between 

the thermals to be divided into as many parts as there are different 

values of [ws ], and that associated with each part is an amount of 

thermal climb necessary to regain the height lost in that part. Then the 

[formula 8.91 is valid for each part and so the best speed to fly in that 

part can be obtained by the usual construction. Hence the method ... 

remains valid even when the sink varies along the flight path".
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Whilst Eq. (8.8) tells us the instantaneous average speed, it will not 
tell us the average speed for the whole climb-glide sequence. The 
expression is quite complicated, involving integrals, and is not of much 
interest in practice. Also, the speed Vis now varying, and hence so will 
be the total variometer reading, thus rendering a total energy variometer 
quite essential. In fact, one must go for a better device than this, for as 
ws changes and the pilot tries to adjust his speed accordingly, the rate of 
sink of the sailplane, 1^, also changes. So, if the pilot is using the normal 
MacCready ring (see Chapter 9), he will be chasing the variometer, even 
if it is of the total energy type. However, as explained in Chapter 9, this 
effect can be removed from the variometer readings.

The EGA Handicapping System

At the beginning of this chapter, we saw how to calculate the 
maximum rate of climb attainable in a parabolic thermal. The basis of 
the EGA handicapping system is now clear: we obtain the maximum 
rate of climb of a given sailplane in the EGA standard thermal (4.2 knots 
maximum, with a radius of 1,000 ft) and then use this in conjunction 
with a construction as in Fig. 8.4 to obtain the average cross-country 
speed. This is then compared with the speed of a sailplane handicapped 
at 100 (ASW-15, DG-100, Hornet, LS-1, SHK-1, Std. Cirrus) to get the 
final figure. Thus the ASW-24 will have a rate of climb of 2.4 knots, 
giving an average speed of 38.5 knots, and a handicap figure of 105. In 
practice, this system is not followed exactly and the Handicap Sub 
committee has introduced some variations. (See Spencer, (1993)).
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Chapter 9

SOME IDEAS ON THE PRACTICE OF 
CROSS-COUNTRY FLYING

It would be nice if the pilot could be provided with some simple 
indication of the best speed to fly, in accordance with Eq. (8.9), from 
the information readily available in the cockpit. First, consider the results 
of finding the best speed to fly for various thermal strengths, assuming 
that the air between the thermals is stationary. In effect we draw tangents 
from various values of Vc to the polar curve, as indicated by Eq. (8.7). 
The results for the ASW-24 at a wing loading of 6.7 lb/ft2 are as follows:

Table 9.1.

Vc V knots 
knots between thermals

0.20
0.71
1.28
1.92
2.64
3.44
4.34
5.34

55
60
65
70
75
80
85
90

Vai , knots 
average speed

7.42
19.84
28.50
35.29
41.01
46.08
50.70
55.03

It is now clear that the values displayed in the first column of this 
table are also applicable to the situation displayed in Fig. 8.5 provided 
that they now represent Vc + ws The table may now be modified by

75
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adding to the figures in the first column, the still-air rates of sink Vs 
corresponding to the values of V in the second column, thus giving 
(V^+ KC + M;S ) as in Table 9.2. Figures for V^are now omitted since they 
are no longer very relevant. Also, since ws has been treated as a 
downdraught for the purposes of this analysis, it can have either sign in 
practice. In the present convention, a positive sign represents a 
downdraught and a negative sign an updraught.

Table 9.2.

V knots 
between thermals

55
60
65
70
75
80
85
90

Vs 
knots

1.28
1.44
1.64
1.89
2.19
2.54
2.94
3.39

Vs + Vc + ws 
knots

1.48
2.15
2.92
3.81
4.83
5.98
7.28
8.73

In Table 9.2, values of Vs are given for the various values of V, to aid 
this calculation.

Now consider the device shown in Fig. 9.1. A rotatable ring surrounds 
the variometer and, with the datum mark set to zero, speeds 
corresponding to the first column above are marked opposite sink 
indications on the variometer scale corresponding to the third column. 
For example, 70 knots is opposite to a sink value of 3.81 knots on the 
variometer scale.

For use in flight, the ring is rotated so that its datum is opposite the 
figure on the rate of climb scale corresponding to the pilot's estimate of 
Vc . When flying between thermals, the variometer will show a sink 
reading of Vs +ws , and hence, the speed to fly will be the figure on the 
ring opposite this value. For example, if the rate of climb is 2.5 knots
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Fig. 9.1. The MacCready ring.

Fig. 9.2. The MacCready ring modified to deal with two weights of the sailplane.

and the variometer shows a rate of sink of 4.7 knots, then the speed to 
fly is 84 knots. This is the MacCready ring, whose use has become 
nearly universal. In this form, it can only be used with a linear-scale 
variometer, such as the Winter or PZL, but this is not now a significant 
limitation. Originally, Paul MacCready also proposed a system for 
variometers with non-linear scales, but this was a clumsy system involving 
a series of interchangeable rings. Strictly, a separate ring is required for 
each different weight of the sailplane, but in practice, it suffices to have 
two scales: one for normal maximum weight and the other for the 
maximum weight with water. Both scales can easily be incorporated 
into the same ring, as in Fig. 9.2.

Working out the markings on the MacCready ring by literally drawing 
tangents to the polar is, in practice, highly unsatisfactory. It is remarkably
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Fig. 9-3. The polar of the ASW-24 with an approximate analytical curve, shown dotted.

difficult to draw proper tangents and the speed figures are then scattered 
around the ring in an unconvicing fashion. It is normally better to proceed 
in an analytical fashion, as follows. Equation (4.12) for the rate of sink 
was:

2 Vsi IVsio = (V /V )3 + ( ^io / V ) (9.1)

We now wish to transfer a curve having this form to an actual polar, 
as nearly as possible. In general, such a curve can only be made to pass 
through two measured points, by taking two sets of values of V and V5 
(or Vt and Vsi } and substituting in the above equation to give two 
simultaneous equations in Vio and Vsio (or V0 and Vso ). Figure 93 shows 
that the agreement can be very good indeed if the two points are chosen 
prudently. On the one hand, they should not be too close together, but 
on the other, they should not be too close to the low-speed and very 
high-speed ends of the curve. The optimum speed between thermals 
for a given rate of climb is then given by solving

VC/VSQ = ( V/V0 Y   ( V0 IV ), (9.2)

as can easily be shown by differentiating the previous equation. Also, 
the quantity Vs + Vc + ws can be obtained by adding Eqs. (9.1) and (9.2), 
remembering that Vc + ws can replace Vc . Hence we get:
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Valve

Fig. 9-4. The variometer arranged to show air mass movement.

(v, (9.3)

Hence, choosing a suitable series of values of V, we can find 
Vs + Vc + ws and hence complete the table, as in Table 9.2. This all lends 
itself to devising a simple computation programme and in fact Table 9.2 
was obtained in just this fashion.

Little Tricks with Variometers

Chapter 5 indicated that the variometer could be induced to display 
Air Mass Movements. The point of doing so is that even with total 
energy, there is still an element of successive approximation in interpreting 
variometer readings in the gliding mode. Suppose, for example, that we 
are droning along happily at, say, 70 knots, when we suddenly run into 
a downdraught which, to a first order, demands a speed of 85 knots 
according to the MacCready ring. On increasing speed to 85 knots, the 
rate of sink of the sailplane has increased and we are now required to 
fly at 90 knots. But, on increasing speed to 90 knots, there is a further 
increase in the rate of sink, and so on. In practice, one learns to overshoot 
a little, and in any case, the external conditions are unlikely to remain 
steady, so that the above scenario cannot be precisely reproduced. 
However, it would be nice if it were not lurking in the background, so 
to speak, thus complicating an already somewhat awkward process.
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The difficulty is that the variometer continues to show the rate of 
sink of the sailplane and it is the variation in this quantity which causes 
bother. In order to remove this quantity from the indications of the 
variometer a leak is applied to the bottle side of the variometer, via a 
capillary tube as in Fig. 9.4. Now the rate of flow through the capillary 
will be proportional to the pressure difference between the ends, 
assuming laminar flow in the capillary, and that pressure difference will 
be the dynamic head, \pV2 . If the rate of sink of the sailplane were 
parabolic, then the compensation system of Fig. 9.4 could be arranged 
to operate exactly but, of course, the performance curve is not parabolic. 
However, the errors, over the useful part of the curve, can be arranged 
to be very small. Appendix 7 of "New Soaring Pilot" suggests a theoretical 
approach to this matter, but in practice there are so many uncertainties 
that it is best to arrange an empirical calibration. Starting from the idea 
that the capillary will be about 12" long if the internal diameter is 0.0145", 
a series of flights are made when the air is totally calm, the variometer 
being connected as shown in Fig. 9.4. The length of the tube is adjusted 
until the variometer reads zero at some reasonable speed, such as 70 
knots, but it will then be found that it also reads close to zero at all 
likely cruise speeds. Since the pressure drop along such a capillary is 
inversely proportional to the fourth power of the diameter and to its 
length, it will be appreciated that small manufacturing errors can make 
a very large difference to the final length. Of course, different lengths of 
capillary will be required for different maximum weights of the sailplane 
and the ring is calibrated by putting the speed markings opposite values 
of the rate of climb, Vc , on the variometer scale.

An extension of this system enables the variometer to be used as a 
flight path indicator. If the capillary tube is shorter than that corresponding 
to that of the Air Mass Movement, or "net" variometer, then when the 
sailplane is descending, the rate of flow through the capillary will be 
greater than the rate of flow into the bottle. There will therefore be an 
outflow through the variometer, which will show some rate of climb 
reading. It is possible to arrange the capillary leak so that, whatever the 
motions of the atmosphere, the sailplane is being flown at the correct 
speed if the climb reading is kept constant. The length of the capillary is
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about one-third of that required by the previous system and the ring is 
now very simple: it consists of a datum mark to be set to the estimated 
rate of climb and a single mark at some suitable circumferential distance 
from the datum. Further information is given in "New Soaring Pilot", but 
the widespread use of electrical instruments has rendered such mechanical 
contrivances largely obsolete.

Corrections to the Variometer

We have previously noted that in order to make a MacCready ring 
work properly, both the vertical and horizontal speeds should either be 
"true" or "equivalent". In practice, one is faced with an ASI giving 
something close to EAS and a variometer which, if mechanical, will 
show a vertical speed in terms of something close to TAS, or if electric, 
something like TAS x p. in either case, there is a mismatch. For example, 
at a height of 10,000 ft, a mechanical variometer will show about 16% 
too much. So, if we were flying with an equivalent rate of climb of 2.64 
knots at 10,000 ft, the speed we ought to be flying at is 75 knots. However, 
the rate of climb shown on the variometer is 3.072 knots, corresponding 
to an EAS of 77.5 knots. This is only 2.5 knots too much, which might 
be thought negligible. However, it corresponds to spending 45% of 
one's time in thermals, as opposed to 43%. This may not seem much, 
but the effect increases with altitude and why spend any more time in 
thermals than is strictly necessary?

This snag could be avoided by having a suitable electric device, 
which essentially uses EAS for everything, except navigation. The 
manufacturers of such devices are inclined to be a little vague about 
what they actually use, so some of them may only be correct at sea- 
level.

In general, we need to be rather wary about the indications of 
the MacCready ring and similar devices. Many a person has found an 
initial thermal, found it to have a rate of climb of about 5 knots, and 
has then rushed off at about 88 knots straight into a field landing. All of 
this could have been avoided if he had surveyed the scene from the 
top of the first thermal, and then decided on a reasonable speed to fly 
to get to the next visible thermal (if it's that sort of day) and then only
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working up to the speeds shown on the ring when the thermals are 
regular.

If the sailplane is fitted with flaps, each flap setting corresponds to a 
different polar. However, the optimum envelope usually corresponds 
quite closely to Eq. (4.12), and therefore all of the previous constructions 
and/or calculations can be used, assuming that the machine is always 
flown at the optimum flap setting.

So far, we have said nothing about the wind. On a straightforward 
cross-country flight, the wind affects the navigation and the final glide, 
as considered in Chapter 12. All we need say here is that the wind has 
no effect on the optimum speed for gliding between thermals since the 
glides and climbs are all taking place in an air mass moving bodily over 
the countryside, and conditions for a maximum speed through the air 
are also the conditions for maximum speed over the ground. The wind 
will obviously affect the speed attained over the ground and the height 
to leave the last thermal of the flight. This assumes that the thermals are 
convected with the wind, which seems a reasonable state of affairs, but 
some sources of lift remain more-or-less stationary with respect to the 
ground. Lee waves are one example, to be considered in Chapter 12.
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Chapter 10

MORE ADVANCED IDEAS ON 
CROSS-COUNTRY FLYING

In the last chapter, we considered the use of the MacCready ring and 
in Chapter 8 we noted that some analyses used a climb-glide sequence 
whilst others used the glide-climb. At an elementary stage, both analyses 
are quite valid. But in 1978, Messrs. Litt and Sander published an analysis 
of cross-country flights which, although it still had many unrealistic 
features, gave some useful rules.

Their assumptions were as follows:

1. Thermals are concentrated at places unequally spaced along the 
trajectory.

2. Their locations and characteristics do not change with time.
3. Their strengths are generally unequal.
4. The air between them is still.
5. There may be upper and lower bounds to the operating heights.
6. The sailplane is flown at constant speed between the thermals.
7. There is no wind.
8. The flight begins and ends at a given minimum height.
9. Each glide is linear but all glides are not necessarily in the same 

direction.

The pilot has to decide how far to climb in each thermal and 
the speed to fly between them. The object is to maximise the overall 
speed for the task. Various sets of rules can be deduced, which depend 
on the assumed height constraints. There will usually be a lower height 
limit, below which the pilot gives up soaring and resigns himself to 
landing, and similarly an upper limit, above which the rate of climb
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Fig. 10.1. A cross-country flight to illustrate the theory of Litt and Sander.

becomes unacceptably low or cloudbase or controlled airspace intervenes. 
The author considered four cases, of which the first two were not very 
relevant. The first assumed no height constraints at all and therefore 
leads to the "classical" analysis and the simple use of the MacCready 
ring. The second assumes a minimum but no maximum altitude constraint 
and leads to some odd-looking rules, since one can always climb high 
enough to reach the first of the next thermals stronger than the first one, 
flying at the MacCready speed appropriate to the first thermal, and so 
on. More realistic is the third case, where there are both maximum and 
minimum altitude constraints. A short section of such a flight is shown 
in Fig. 10.1, where the thermal spacings are at mutiples of 10 km, simply 
for ease of drawing, and it will be noted that the speed during a glide is 
sometimes appropriate to the strength of the preceding thermal, 
sometimes to that of the next thermal, and sometimes to neither. 
Incidentally, the analysis of such flights invokes the Calculus of Variations, 
a topic which is touched upon in Chapter 11. This produced a set of 
rules of some complexity, which were simplified by de Jong (1982), as 
follows:

A. In any thermal, climb only high enough to reach a stronger thermal 
at minimum altitude by flying with a MacCready ring setting 
corresponding to the present climb rate.

B. If there is no stronger thermal that can be reached using Rule A, 
climb to maximum altitude and proceed with the highest feasible
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MacCready ring setting with which a thermal can be reached, at or 
above the minimum height, having a climb rate equal to or larger 
than that corresponding to the MacCready ring setting.

The rules for the final glide are then as follows:

A'. In the last thermal, climb only high enough to reach the finish at the 
minimum safety altitude by flying with a MacCready ring setting 
corresponding to the climb rate in the last thermal.

B'. If the finish cannot be reached by following Rule A'; climb to 
maximum altitude and proceed with the highest feasible MacCready 
ring setting at which the finish can be reached at the minimum 
safety altitude.

(These rules have been slightly paraphrased, but only to make them 
more readable). In a more complicated case, the strength of each thermal 
varies with height, with an initial increase in strength followed by a 
decrease: altitude constraints are implicit in such a distribution of strength. 
The rules are then as follows:

1. The MacCready ring setting must correspond to the instantaneous 
rate of climb at the height of leaving the thermal.

2. The rate of climb at the height of encountering the next thermal must 
be the same as that on leaving the previous thermal.

3. If this procedure is not possible, proceed as in Par. B' above.

For a pair of thermals with given distributions of climb rate, at a 
certain distance apart, these rules lead to a unique solution, which gives 
the height to leave the first thermal, the speed to glide and the height to 
meet the second thermal, as shown in Fig. 10.2. These rules appear in 
Reichmann's book (1978) and had been deduced by a process of Pure 
Thought by Anthony Edwards some years earlier (1964). This, of course, 
represents an ideal state of affairs almost impossible to achieve in real 
life. Fortunately, the variation of rate of climb with height is usually 
rather different from that shown in Fig. 10.2, having a reasonably lengthy 
constant region in the middle, so the advice is that it usually pays to 
leave the thermal as soon as the rate of climb starts to fall off. Then, 
assuming that on a given day, thermals are sufficiently abundant, and
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Fig. 10.2. A flight between thermals of varying strength.

have roughly the same strength, the MacCready ring setting will 
correspond to that strength.

Although Litt and Sanders assume still air between the thermals, one 
can assume that down-draughts degrade the performance by an amount 
that is roughly constant, although it may vary slowly with the time of 
day. So, it seems reasonable to follow the indications of the MacCready 
ring, having set it in accordance with the foregoing rules.

Dolphin Flying

So far, all of the theory including the classical "best speed to fly 
theory" assumes a load factor of unity, or something quite close to this 
figure. But, in following the indications of the MacCready ring, we wish 
to increase speed where the air is descending and to slow down where 
it is ascending, and the theory implicitly assumes that such speed changes 
can be made instantaneously. Obviously, this is not possible, but how 
rapidly should the speed changes be made?

The matter of encountering an up-draught was considered by Gorisch 
(1981), with a wealth of vector analysis. This ultimately amounts to the 
following: in normal steady flight in still air we are accustomed to the
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Fig. 10.3. Flying in an up-current.

lift vector acting at right angles to the direction of motion, and it therefore 
does no work. When flying in an up-draught (see Fig. 10.3), with initially 
9 assumed zero, the lift is no longer at right angles to the direction of 
motion: indeed it is being convected upwards at a velocity w and therefore 
does work at the rate Lw, which equals n Ww if the load factor is n. Now 
the work done is equal to the weight multiplied by the rate of change of 
energy height plus the instantaneous rate of sink. So we get:

w[dhe/dt+Vs ]= nWw 

or

ctbe /dt = nw- Vs . (10.1)

Under the conditions shown in the diagram, the effective up-draught 
becomes w cos 9, and since the load factor is no longer unity, the drag 
depends on both the speed and the load factor. So finally, the general 
expression of this equation is:

dbe /dt = nwcosB - Vs (v, n) . (10.2)

This leads to some curious conclusions. Effectively, the strength of 
an up-current is multiplied by the load factor, provided the increase in 
drag is not excessive, and energy can also be extracted from a down- 
current, by applying a negative load factor. Clearly, applying a positive 
load factor in sinking air or a negative load factor in rising air is not a 
good idea. For a given sailplane, there will be a load factor depending
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on the forward speed and the rate of ascent of the air, which maximises 
the rate of gain of energy height. The optimum value is quite high: for 
a Standard Class sailplane at 80 knots, meeting an up-current of 4 knots, 
the optimum load factor is about 4.88. Such load factors, apart from 
being very emetic, can only be sustained for very short periods: even at 
a load factor of 3.0 and an initial speed of 80 knots, the machine is 
pointing vertically upwards after 3.5 sec. With 0= 90°, the amplification 
due to the increased load factor becomes zero anyway, so in practice, 
something rather gentler is required.

However, the effect is perfectly real and it is possible to perform 
more complex calculations to see how one should fly in more complicated 
situations. For example, Pierson and Chen (1979) have applied another 
dose of the Calculus of Variations to considering a sailplane flying (1) 
through a sinusoidal pattern of vertical motions of the atmosphere with 
a wavelength of 1000 m and (2) with a wavelength of 500 m, with zero 
height loss in both cases. In the first case, the result, as one would 
expect, is quite close to the classical one: one slows down in the up- 
current and speeds up in the down-current. But in the second case, the 
opposite is true, in order to apply a significant positive load factor in 
the up-current and a negative load factor in the down-current. At 
some intermediate wavelength, it doesn't matter which trajectory is used. 
There are, it is worth saying, numerous other papers on this subject. 
Gorisch (1981) has achieved some tentative rules, as follows:

1. Adjust the average speed according to the speed command of the 
MacCready ring fitted to an averaging total energy variometer.

2. Perform load variations according to the instantaneous variometer 
reading. The speed varies, but its average should be maintained 
according to the previous rule.

The Carriage of Water Ballast

A little thought shows that it pays to make provision for the carriage 
of a great deal of water ballast. Speeds, both along the flight path and 
vertically, are proportional to the square root of the all-up weight and 
hence the carriage of say 100 Ib of water in a machine initially weighing
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Fig. 10.4. The performance of the ASW-24 in thermals of 1000 ft radius and different 
core strengths at two different wing loadings.

700 lb will make very little difference. This was the order of things 
before the war, when it was realised that adding weight would improve 
the performance in strong conditions, but there was little guide as to 
how much water was required. As is not unusual, an element of 
compromise is involved: the carriage of ballast gives higher speeds for 
the same glide angle, but the rate of sink in thermals is increased and so 
is the radius of turn for a given angle of bank. We can, for example, 
consider flight in parabolic thermals of the usual standard English radius, 
taken to be 1000 ft., and with core velocities up to 8 knots. We can 
consider a machine with a wing loading of 6.7 Ib/sq ft and the polar of 
Fig. 8.4, approximately that of the ASW-24. We proceed as for finding 
the handicap, that is to say, we find the optimum angle of bank and 
hence the maximum rate of climb for a variety of thermal strengths 
using Eqs. (8.1) and (8.2), and from Table 9.1 we can find the maximum 
overall average speed. Then we can repeat all of this for some greater 
wing loading, say 10.2 lb/ft2 . The results are as shown in Fig. 10.4, from 
which it will be observed, that the lower wing loading is better up to a 
thermal core strength of about 5.4 knots and the higher wing loading in 
stronger thermals. However, this is only one sort of thermal: it might 
reasonably be expected that the radius of the thermal would increase 
with increasing core strength, which would give a cross-over point at a
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lower strength. So, on a decent-looking day, be advised that it always 
pays to start with water: it can always be dumped if the thermals do not 
come up to expectations.

Also be advised that it pays to look rather closely at the limitations 
placard before pouring in as much water as the sailplane will take. On 
some machines, it is quite easy to exceed the Maximum Permitted weight 
with water, and this will cause the maximum spar stress outboard of the 
ends of the water bags to be exceeded.
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Chapter 11

OPTIMISATIONS IN GENERAL

The Calculus of Variations

There are many problems such as those discussed in Chapter 8 
where we wish to find the value of a variable which causes a function 
of the variable to have a "stationary" value. For example, we may wish 

to find the value of the inter-thermal speed which makes the overall 
speed a maximum. This type of problem represents a straightforward 
application of ordinary calculus.

There is, however, a class of problems of greater complexity. In 
such a case, we wish to find the stationary values of an integral with 
respect to a function, possibly with other limitations superimposed. A 
simple example of such a problem is the "brachistochrone" of Euler. 
Two points, A and B, A being higher than B, are to be connected by a 
curve lying in a vertical plane through A and B. What should be the 
shape of the curve such that a frictionless particle moving along the 
curve under the influence of gravity traverses the path AB in the shortest 
time? Here, the function is the shape of the curve and the integral is the 
time to traverse the curve. (The answer is that the curve should be a 

cycloid.)
This type of problem lies within the scope of the Calculus of Variations, 

which is generally more complicated than ordinary calculus. Many of 
the problems concerning flight paths, particularly those relating to 
supersonic flight (Miele and Cappellari, 1959), require its application 
and soaring is no exception despite the low Mach numbers. Thus a 

likely problem might be as follows: consider an expanse of countryside 
in which are to be found thermals of various strengths and various
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Wl

Fig. 11.1. The sailplane at some general moment in a flight.

height limits. What is the best strategy to fly from one point to another 
in the least time? It is by no means clear whether one flies reasonably 
straight, accepting some poor thermals and occasionally having to glide 
at the speed for maximum L/D, or whether one zig-zags to use better 
thermals. In fact this sort of problem is generally insoluble, since in real 
life its solution requires powers of prophecy, although some approximate 
rules can be formulated. It is also clear that some effort goes into 
simplifying the problems so that they can be dealt with by the rules of 
ordinary calculus and to reduce the element of foresight required.

It is not the author's intention to provide a comprehensive guide to 
the Calculus of Variations, but it leads to an important general result and 
at least one neat application: that of cloud-street flying.

Analysis of the Best Speed to Fly

Figure 11.1 shows the sailplane at some general moment in a flight 
on a constant heading. Let x denote the distance along the flight path 
and w (positive upwards) the local vertical velocity of the air. To an 
external observer, w will be a function of both distance x and time t, but 
from the point of view of the pilot, it may be regarded as a function of 
x only. Suppose that the instantaneous forward speed of the sailplane is 
V. Also assume that the air density is substantially constant.

The time to travel from x\ to x2 will be:

x\

= J dx/V .
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The equation of motion of the sailplane along its flight path in still 
air will be:

= Q (11.1)

where 9 is positive nose-up (see Fig. 11.1). 
If the energy height is £e , where

be = h+ V 2/2g } 

and h is the true height, then

be/dt = db/dt + (v/g) dV/dt = V sin0 + (v/g) dV/dt , 

and from (11.1),

dbe /dt = -DV/W .

But DV/W is the rate of sink of the sailplane, Vs , when flying steadily 
at speed V.

In the presence of an up-current w the total rate of change of energy 
height will be

(dbe /dt\ot = w-Vs . (11.2)

This, of course, assumes that the load factor is substantially unity: 
otherwise we must use the expression from Chapter 10 and the problem 
becomes too complicated.

The total change of energy height between Xi and x2 will be:

x\

He = f (dhc /dt)tat (dt/dx) dx

X\

= \(w-

Now let us suppose that we wish to fly in such a fashion that, for a 
given ( Xi - x2 ), T is a minimum and //e = 0. This is not the only criterion 
which could be applied, but it seems to be a simple and likely case.
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T is of the form j F (V )dx and 

//e is of the form \G(V ,x)dx.

It therefore follows from the Calculus of Variations that the criterion 
to be satisfied is

dF*/dV = 0,
* 

where F = F + AG
- Vs ), (11.3)

and A is a constant Lagrange multiplier. The precise significance of a 
Lagrange multiplier is not of much significance in this analysis: it is 
simply to be regarded as a constant for each particular problem. 

So the criterion is:

-(l/V 2 ) - (l/V 2 )(w-Vs ) - (l/v)(dVs /dV) = 0. (11.4)

since Vs is a function of V only. 
This can be re-arranged to give:

or, since (I/A) must clearly have the dimension of velocity,

dVs /dV = (vs -w-w )/V . (11.5)

The criterion expressed by this last equation is shown graphically in 
Fig. 11.2.

This is, in fact, the "classical" construction. It is noteworthy that we 
have only specified that the speed should be a maximum and the total 
change of energy height should be zero: the nature of the lift, be it 
normal thermals or cloud streets or waves is not defined. It defines, in 
effect, the zero-setting of the MacCready ring and whilst the diagram is 
drawn for a positive value of w *, its actual value remains to be determined 
by the circumstances of the problem.

What we can say is as follows: any problem which involves finding 
the best speed to fly so that the overall speed is a maximum and
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Fig. 11.2. The criterion for maximum speed.

the total change of energy height is zero, the load factor being 
substantially unity, is solved by drawing a tangent to the polar.
The point from which the tangent is to be drawn remains to be defined, 
according to the nature of the problem.

This is the sort of problem which can be solved by a suitable setting 
of the MacCready ring, or setting an appropriate rate of climb on an 
electrical device, since w+w* is essentially the zero setting of the ring. 
It should be noted that this total quantity will often be negative: indeed 
circumstances may arise when one should fly at a speed less than that 
for minimum rate of sink: it may be advantageous to spend a long time 
in a feeble up-current at the expense of some increase in the rate of 
sink.

From the pilot's point of view, this analysis contains a difficulty: w * 
is ultimately determined by the condition that //e = 0, and hence requires 
a knowledge of w as a function of x over the distance x2 - x\. 
Unfortunately, as remarked elsewhere, prophecy is in rather short supply 
amongst soaring pilots. When flying under a cloud street, the pilot may 
initially wish to gain height, on the average, until he is reasonably close 
to cloud base, and then adjust the MacCready ring by a process of 
successive approximation so that, overall, there is no net change of 
height. In real life there tends to be insufficient time to make such 
adjustments other than very approximately.
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Fig. 11.3. The dimensionless criterion for maximum speed.

Example of an Unflapped Sailplane Flying Under a Cloud Street

In Eq. (4.12), we saw that the dimensionless expression for the 
idealised performance curve was:

2V IV = (V IV   V + (V /V]*- r si / r sio \ * 11 r 10 / ' V'o/ / *

Now, if we denote Vsi /Vsio by Vs and VjVio by V 1 then this may 
equally be written

vs = \(v!+i/v_)- O1.6)

Let w= w/Vsio and w* = w*/Vsio . Then, in dimensionless terms, the 
criterion of Eq. (11.5) becomes

dVs /dV_ = (vs - w- w }/V_ ,_ _ (11-7)

and this is illustrated in Fig. 11.3. 
From (11.6) and (11.7)

j(3H2 -i/K2 ) = i(n2 -l/L2 )-(^ + u?}lY_, (11.8) 

which becomes

(11.9)
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Suppose that a distance x\, in which the upwards velocity of the air 
has a constant value w , is covered at an optimum speed V} and a distance 
x2t in which w- 0, is covered at the corresponding optimum speed V2 . 
Then, from (11.9),

w+ w =(l/Ki)- Ki3 (11.10) 

and

^*=(l/K2 )- V_l, (11.11) 

whence

23 . (11-12)

Also, the rate of climb over the distance x\ will be Vc =w-Vs i. For 
zero overall height change:

XiVc/V, = X2 VS2 /V2 • (11.13)

Strictly, since the previous theory dealt with energy heights rather 
than true heights, this expression should include a kinetic energy 
correction, omitted here in the interests of simplicity. So

Xi/x2 =Vs2/V2vl /w-Vsl . (11.14)

Since Vs i and Vs2 are functions of V ̂ and V2 respectively, (11.13) 
and (11.14) can, in principle, be solved simultaneously to give V^ and 
V2 if w and x\l x2 are known.

It is interesting to consider what combinations of thermal strength 
(*£, in effect) and distance ratio Xi/x2 are required to maintain continuous 
flight. One obvious particular case occurs when_K2 /!^2is a maximum 
(i.e., when the sailplane is flown at (Z/D) max over the distance^)- This 
will correspond to V2 = 1, Vs2 = 1.

Under these conditions, from (11.11), (11.10) and (11.14):

w* =0 ,

W =(l/Ki)-Ki3 (11.15)

(11.16)
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Eliminating K! from (11.15) and (11.16) gives a relation between 
and w the least value of x\/x2 which will just permit continuous flight. 
It is apparent that V_\ <j, from (11.16). Now, from (11.6), this case 
corresponds to _K S min, so, as is apparent on physical grounds, the limiting 
case corresponds to flying at minmum sink in a continuous up-current

2 —of the same strength, i.e., x\lx2 = °°, w = Ysi = (y) 4
The choice of values of Vi is therefore very limited: the maximum 

value is 3~° 25 and the minimum value is that corresponding to the stall.
These results are not very realistic: because we have imposed the 

condition that the average speed shall be a maximum, very weak thermals 
require the sailplane to be flown at unrealistically low speeds. The 
expression used for the performance, (11.6), has no implied lower limit 
to V. It would be better to assume that the sailplane is never flown at a 
speed less than that corresponding to minimum sink, in which case in 
examining the limiting conditions for continuous flight, we abandon the 
maximum average concept. The sailplane is flown at minimum rate of 
sink in the rising air and at its best gliding angle in the still air.

Inserting Z2 = Zs2= 
becomes approximately,

,-0.25 and V sl = (4)4 in (11.14), this

xl jx2 =0.759/(tt>- 0.878). 

Figures obtained from Eq. (11.17) are given in Table 11.1:

(11-17)

Table 11.1

IV

0.878
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

^» / f *v* -1- ^* 1.JCl / V-^l ' -^2x

1
0.86
0.403
0.272
0.196
0.155
0.129
0.110
0.096
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0.759

Total distance 
Distance mlift

Fig. 11.4. A plot of speeds against thermal strength and total distance/distance in lift, 
all in dimensionless terms, for flight under a cloud street.

In this table, w= thermal strength/rate of sink of the sailplane at 
maximum L/D, Xi/(xi + JC 2 ) = distance in rising air/total distance.

If we now consider in general terms the case of achieving maximum 
average speed, we can assign some likely constant value to Vi and 
then consider a series of values of V2 . From Eq. (11.12) we can obtain 
the value of w_. Since Vs i and Vs2 are simply related to Vi and V2 
respectively, we can obtain x\/x2l or more usefully (xi + x2 )/x\ from 
Eq. (11.14). It is then possible to find the dimensionless cross-country 
speed, Vavj since

Y.OV - (x\Vi + x2 V2 )/(xi + x2 \ (11.18)

For the present purposes, the assumed values of Vml were 0.759 
(i.e., the speed for minimum rate of sink), 1.0 (speed for best gliding 
angle) and 1.2. Values of V 2 up to 2.0 were taken. The results are 
presented in Fig. 11.4.
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A Numerical Example

Consider a sailplane whose (L/D)max is 43 at 58 knots HAS. If w = 4 
over 25% of the flight path, the upcurrent strength would be 4 x 58/43, 
i.e., 5.395 knots. Flown at Yi = 0.759, the rate of climb would be 5.395 - 
0.878 x 58/43 = 4.211 knots. V2 is then 1.57 or 91.06 knots, and the 
average speed becomes 1.36 x 58 or 78.88 knots.

A Final Caution

The above analysis will give an optimistic estimate of the average 
speed, since it assumes in Eq. (11.6) that the simple performance 
expression applies down to the minimum sink speed, which is rather 
unlikely. Also, it assumes that the pilot can instantly assess the overall 
situation, and will fly at the correct speed between the thermals. It also 
assumes a "square wave" pattern for the lift and no downcurrents between 
the lift, both of which are most unlikely. So, altogether, there are many 
simplifying guesses, but it does indicate that the speeds attained are 
likely to be considerably higher than can be attained in normal thermal 
soaring. In practice, one would fly at the speed of minimum sink in the 
lift, or perhaps a little slower, and it will then be necessary to experiment 
in the bits of the cloud street between the lifting sections, trying to 
obtain that compromise between a high speed without losing height on 
the average.
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Chapter 12

THE EFFECTS OF WIND

So far, we have implicitly assumed that the wind is zero. In practice, 
zero wind rarely occurs and it has a profound effect on almost all aspects 
of cross-country flying. A good example is the calculation of the height 
to leave the last thermal of a flight, for which the starting point is to 
assume that the wind is, in fact, zero (see Fig. 12.1). If the strength of 
the last thermal was constant, then the speed during the final glide 
would be that corresponding to this value according to the classical 

theory. The calculation of the final glide and the height to leave the last 
thermal is therefore simple: if the best speed is Vopi and the distance to 
go is X, then the time taken will be X/Vopl and if the rate of sink at Vopl 
is Vs , then the height to leave the last thermal will be XVs/Vopt . This 

assumes no safety allowance, so far as height is concerned, so a prudent 

height would have to be assumed at point C.

Fig. 12.1. Height to leave the last thermal in zero wind when the thermal strength is 

constant.
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6

0 24
«— Time, min

28 32

Fig. 12.2. Height to leave the last thermal when its strength is variable.

Now, whilst climbing in the last thermal, a height hA will eventually 

be attained from which the goal can just be attained by flying at maximum 

L/D. It will then be possible to leave the thermal at any greater height 

and achieve the goal with little trouble. The problem is now to minimise 

the time for the path ABC, recognising that the strength of the thermal 

may be variable. Now consider Fig. 12.2, in which the somewhat irregular 

line on the left represents the thermal. Since the plot is on a height-time 

basis, showing heights above A, then the thermal strength is indicated 

by the gradient of this line. The line on the right is a plot of gliding 

speed, giving the gliding time in minutes to cover the required distance. 

At any particular height above A, the glide angle to reach the goal will 

be known, and hence the speed, given the performance of the sailplane. 

The distance between the line representing the thermal and that 

representing the glide will be proportional to the total time of the flight 

once point A has been achieved, and hence we wish to fly in such a 

fashion as to make this time a minimum. This will correspond to the 

line XX', and the gradients of the curves at X and X' will be the same. 

Putting it another way, the pilot continues to climb until the rate of 

climb no longer exceeds that appropriate to the speed at which the 

glider could be flown to the goal at that instant, the relation between 

climb rate and speed being that of the classical theory. An interesting
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3-

Fig. 12.3- Criterion for gliding to the goal from height hA or greater in a thermal of 
constant stength with a headwind.

feature of this situation is that the pilot is now interested in the 
instantaneous rate of climb, rather than some average rate of climb. So, 
in the example shown, if the rate of climb is 3 knots at a height of 
4,500 ft, the pilot goes on climbing, but if the rate of climb falls off to 2.3 
knots at, say, 5,100 ft, he stops climbing, sets the MacCready ring to 2.3 
knots and departs for his goal. This situation has the advantage that if an 
unforeseen down- or up-draught occurs, the pilot can always regulate 
his speed accordingly.

In the presence of a wind, the situation becomes markedly more 
complicated. Again, there is a height bA from which the pilot can just 
reach the goal at a distance X, but the minimum gliding speed is now 
given by the construction of Fig. 12.3- Extrapolating the tangent to the 
left to intersect the vertical axis implies that this situation corresponds to 
a certain thermal strength, that which causes the glider to climb whilst 
drifting downwind, always just able to reach the goal. (This is written as 
if there is a headwind component: similar considerations will apply to a 
tailwind, with the signs reversed.) The expression for calculating the 
height required is now
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(b+hA )/(X + bV»/Vc )=Vs /(vopl -Vw ) (12.1)

from which it will be inferred that the optimum speed remains that 
given by the classical theory, a result which would require about a page 
of mathematics to display formally. This relationship takes into account 
the fact that, if the sailplane is at X from the goal when at height hA , it 
will drift back a distance hV^/Vc whilst climbing to h + hA .

Obviously, trying to do these sorts of calculations in the heat of the 
moment is quite impossible, and in practice one has to resort to a 
calculator. This can either be of the mechanical analogue variety or, in a 
modern sailplane, a suitable electronic device.

Wind Components

In the above theory, we have considered a headwind component 
or, with a sign change, a tailwind. But in most circumstances, the wind 
will be directed at some angle to the desired track and we will will wish 
to assess its effect. Suppose that V is the true airspeed of the sailplane, 
either the average over a long task or the gliding speed if we are only 
concerned with a single glide. From the triangle of velocities, the speed 
made good along the track will be

Vtr = V cos A - Kw cos/ (12.2)

where A is the angle between the course and the track and / is the angle 
between the wind direction and the track. But since

V sinA = Kw sin/ (12.3) 

A may be eliminated from Eqs. (12.2) and (12.3) to give

VIT =v[l-(vw /v)2 sm2 r ]~2 - Vw cos/. (2.4)

The effective headwind is then the difference between the speed of 
the sailplane and the speed made good along the track, i.e.,

v „ = v — v = vv weff — v v tr — v l-(l-(Vw /V)2 sm r )~2 + (Vw /V)cosr~\ .

(12.5)
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i '

Fig. 12.4. Triangle of velocities, in the general case.
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Fig. 12.5. The effective headwind plotted against the orientation of the task, for two 
values of the headwind.

A consequence of this expression is that a wind at right angles to the 
track reduces the speed made good along the track, although it has no 
component in the direction of the track. This effect arises because the 
sailplane must proceed on a course which is slightly into wind in order 
that its resultant track shall be in the correct direction. (See Fig. 12.4).

Figure 12.5 shows plots of Vweff /V^ against 7 for two values of 
Vw/V. It will be seen that when V^/V- 0.5, the effective headwind only 
becomes zero when / is about 104°. A consequence of this situation is 
that, in closed-circuit tasks, the effects of wind are never self-cancelling. 
For straight out-and-return tasks conducted at a constant average true
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Fig. 12.6. Average speed plotted against orientation of the task, for one wind speed. 
Note that whilst the effect on the triangle is here shown as constant, and is referred to 
as such in the text, there is, in fact, a very small variation in speed.

airspeed, the direction of the task relative to the wind has very little 
influence on the total time if the wind is light. But if the wind is strong, 
the highest average speed is attained when the task is cross-wind. Figure 
12.6 is derived from the previous plot and shows average speeds for the 
case V9f/V=Q.5, relative to the zero-wind case for various orientations 
of the task. The cross-wind task is about 15% faster than the upwind 
and downwind tasks. For closed-circuit tasks consisting of equilateral 
triangles, the orientation of a task relative to the wind direction has no 
effect.

So far, we have assumed that the average true airspeed is constant 
throughout the flight. If the thermals are of constant strength, the final 
leg of a closed circuit task will be the fastest because, if the task is 
started at a height of say 1000 m, then the final glide from 1000 m down 
to ground level can be regarded as a bonus since it is flown at the 
optimum gliding speed, appreciably faster than the average speed of 
the flight. This effect has some influence on the optimum orientation of 
a task in the presence of a wind.

Consider a flight of 300 km in which the optimum gliding speed 
between thermals is 80 knots and the corresponding average speed is
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46 knots. If the wind is 13-8 knots, then the average value of Vw/Vwil\ 
be 0.3 and, at 80 knots, it will be 0.1725. It is assumed that the final glide 
starts from 1000 m. Hence, from the preceding theory, we can work out 
the time for the two legs of an out-and-return flight, the second including 
the final glide. The average speeds for the two legs are then as follows:

(a) First leg downwind: 44.42 knots
(b) First leg upwind: 43.21 knots
(c) Both legs crosswind: 45.98 knots
(d) In zero wind: 48.14 knots

So, it will be seen that a downwind final leg leads to the lowest 
average speed. Given complete freedom of choice, one would wish to 
make both legs crosswind, but the direction of a flight is usually governed 
by other considerations. It then pays to make the first leg as nearly 
downwind as possible.

Similarly, one can analyse a triangular flight, leading to the conclusion 
that, for equilateral triangles, the last leg downwind leads to the lowest 
average speed and the first leg downwind gives the highest. Of course, 
this assumes that the thermals are of constant strength throughout the 
day: if they are initially feeble, this will affect the above results and may 
well reverse them. But in any case, the results for a 100 km flight will be 
greatly exaggerated compared with those quoted above. In such a 
situation, it would certainly pay to think about the direction of the 
flight, and to make the start height as great as possible in the light of 
whatever rules prevail.

Optimum Glide Angles

If the pilot is concerned with the best gliding angle through the air, 
as when trying to reach a distant cloud, then the best speed to fly will 
correspond to point L on the performance curve (see Fig. 12.7) where L 
corresponds to the best gliding angle. In other words, one sets the 
MacCready ring to zero, and then obeys its readings if the atmosphere is 
not steady. But circumstances may arise in which the pilot wishes to 
achieve the best gliding angle over the ground in the presence of a 
head- or tailwind. Here, the situation corresponds to points M and N on
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Fig. 12.7. Best speed to fly in the presence of a headwind (HW) or tailwind (TW).

the performance curve, and the pilot should set the MacCready ring to 
more or less than zero, depending on whether there is a head- or tailwind 
component, and again obeys the readings. This again is an illustration 
of the general result of Chapter 11. Just how much more or less than 
zero is not something which can easily be determined in flight, so again 
the pilot must use a mechanical analogue computer or, more usually, an 
electronic device. Strictly, the above construction is not quite correct, 
since in the presence of an up- or down-draught, the setting of the 
MacCready ring should be slightly varied, but in practice the above 
arrangement will suffice.

Use of Lee Waves

It is implicit in all of the above theories that the wind has no effect 
on the optimum speed for gliding between thermals, since both the 
climbs and glides are taking place in an air mass moving bodily over the 
countryside. Of course, as we have seen, the wind affects the break-off 
height from the last thermal, but the speed for the final glide is still that 
displayed by the MacCready ring.

Now, whereas thermals are assumed to move with the wind, some 
sources of lift remain more or less stationary with respect to the ground. 
In lee waves or simple hill lift, the pattern of streamlines in the atmosphere
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Fig. 12.8. Elementary cross-country using wave lift.

will remain stationary with the wind blowing through it. Imagine a 

cross-country flight conducted by climbing in a wave, gliding against 

the wind to the next wave, and so on. (See Fig. 12.8.) To a stationary 

observer, the diagram representing the flight looks like Fig. 8.2, except 

that the speed over the ground is V- Kw . The theory is then the same as 

for flying in thermals except that V is replaced by V- Vw and hence the 

average speed is as in Eq. (8.8) with this substitution made. The average 

speed is then:

+V (12.6)

and the construction giving the speed to fly which maximises Vav is that 

of Fig. 12.9.
It is clear that if the MacCready ring is set to Vc , it will display an 

optimum speed V2 , which is too low. The correct speed is V^, 

corresponding to a scaled-up ring setting Vc'. Assuming that the pilot 

has reasonable estimates of Vc and Vw he wishes to know the appropriate 

ring setting. Unfortunately, there is no simple solution to the problem 

which can be applied to simple instrumentation, although one could 

doubtless devise a computer which would display the correct speed to 

fly, having been fed with the correct values of Kw and Vc . Alternatively, 

if the pilot sets the MacCready ring to Vc and observes V2 , can he then 

derive the correct speed Vl if he knows Kw ? If one assumes the 

performance curve to be of the form of Eq. (4.12), then the calculation
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Fig. 12.9. Construction to give the best speed to fly for maximum average speed, using 
wave lift.

is quite straightforward, but is hardly something the pilot could produce 
off the top of his head whilst in flight. Also, it is unlikely that a computer 
would be produced to solve such a rarely-used calculation. Fortunately, 
a rough rule of thumb can be adduced, as follows:

(a) For low wind speeds (about one-quarter of the speed for best gliding 
angle), increase V2 by half the wind speed.

(b) For high wind speeds (about the same as the speed for best gliding 
angle), increase V2 by three-quarters of the wind speed.
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Chapter 13

THE EFFECT OF CENTRE 
OF GRAVITY POSITION

It is common knowledge among soaring pilots that the tail lift force 
produces some extra induced drag, since the tail is simply a small wing. 
It is also common to suppose that down-loads are more unfavourable 
than up-loads, on the argument that up-loads relieve the wing lift, whilst 
down-loads increase it. On this basis, pilots have tended to think in 
terms of reducing the down-load on the tail at high speeds by ballasting 
the sailplane to get the centre of gravity (or centre of mass, as is now the 
more popular expression) at the aft limit (or perhaps even further aft). 
In fact a consequence of the mutual interference between the wing and 
tail is that the direction of the tail lift force is of no consequence. Other 
things being equal, a certain up-load on the tail produces the same 
increment in induced drag as a down-load of the same amount.

Long ago, Prandtl and Tietjens (1934) considered the total induced 
drag of biplanes, and this was enlarged upon by R.T. Jones in his excellent 
article in "Soaring" (1979), where he explains in some detail Munk's 
analysis of the total induced drag of a pair of lifting surfaces in tandem, 
such as a wing and tail, taking into account their mutual interference. It 
turns out that if the tail is producing a lift force, then for the same total 
lift, the induced drag is always greater than with zero tail lift and, 
moreover, the direction of the tail lift is of no consequence. Also, the 
relative fore- and aft-location of the surfaces is of no consequence: the 
result for a canard aircraft is the same as for a conventional layout. 
These results assume that the trailing vortex systems of the two surfaces 
are close to the same horizontal plane: with a T-tail, all of the results 
quoted here need some slight modification.

ill
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A consequence of this result is that an upward lift force is just as 
undesirable as a downward force. For a typical fixed geometry sailplane, 
whose CG position cannot be altered in flight, it would typically have a 
small up-load on the tail in slow circling flight and an appreciable down 
load in fast straight flight, both of which will produce an increment in 
induced drag. Percentage-wise, the increment may well be greater at 
the higher speed but, since the induced drag is then a smaller proportion 
of the total drag, the actual drag increment in pounds could well be 
smaller than at low speeds. What interests the pilot is the loss of energy 
height due to the induced drag increments since this is, in effect, the 
extra height he has to gain in the course of a flight.

From Jones' paper, the total induced drag of the wing and tail of an 
aircraft, assuming that the vortex wakes of the two surfaces are close to 
the same horizontal plane, is

A+2 = [w2 17tqb\}{\ + [(b,lb2 J-\][L2 lw]2 }. (13.1)
*J

Since W2 /nqb\ represents the induced drag whenZ 2 = 0, the 
increment in induced drag due to the tail load is obtained by subtracting 
this quantity from the above expression, leaving

ADt = [L 22 /xqb2l ][(bl /b2 ) 2 - lj. (13.2)

It should be noted that if the total lift is nW in circling flight, this 
equation will still apply if the effect of the vortex wakes becoming 
helical is neglected. L 2 must, of course, have the value appropriate to 
circling flight. Also, as noted above, the effect of the L 2 term is that the 
sign of L 2 is of no consequence.

If the sailplane flies for time t at speed V, then the loss of energy 
height due to the additional drag will be

Ah, = AD, Vt/W , (13.3)

it being assumed that the flight takes place near sea level. The conclusions 
on optimum CG position will be unaffected by the mean altitude.

Equation (13.2) may be re-written in terms of the maximum lift/drag 
ratio, the speed at which it occurs and the actual speed. Then if the 
proportion of time spent in circling flight is Pc it is possible to estimate
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the loss of energy height per hour. Pc is conveniently obtained by 
assuming that the classical theory applies, whence

4 -l] (13.4)

where Vg and V0 refer respectively to the gliding speed and the speed 
for maximum lift/drag.

The tail lift in circling flight is then given by

= [cmo qc Sc+(h- h0 )cnW]/l't (13.5)

where c is now the wing mean aerodynamic chord and n is the load 
factor whilst circling. Similarly, in gliding flight, q c is replaced by qg and 
now n = 1.

It is now a fairly straightforward process, for a sailplane of given 
characteristics, to select a certain dimensionless centre of gravity position, 
a likely circling speed and load factor, a likely gliding speed and to find 
Pc . This enables us to find the energy loss per hour due to circling flight 
and to straight flight and hence the total. This can be repeated for different 
values of b, so that the loss of energy height per hour can be plotted 
against h. The whole process can then be repeated for a new value of Vg .

Such calculations have been made for a typical Standard Class 
sailplane. It was assumed that the circling speed in thermals was 47 
knots, and the angle of bank was 30°, thus giving a load factor of 1.22. 
For a gliding speed of 80 knots, the results were as follows:

Table 13.1

CG Position, h

0.25
0.30
0.35
0.40
0.45
0.50

Circling

11.08
0.23
5.48

26.73
64.03

117.33

Ahe /hr, 
Gliding

170.40
119.69
77.90
45.07
21.16
6.17

Total

181.42
119.92
83.38
71.80
85.18

123.49
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It will be seen that, with the CG well forward, the energy loss in the 
straight glide is predominant whilst when it is far aft, the energy loss in 
circling flight is the greater component. The overall loss is least when 
b = 0.4. At lower gliding speeds, the CG position for the least loss of 
total energy per hour comes forward, and is about 0.33 for a gliding 
speed of 60 knots. There does not seem to be any point in getting the 
CG aft of 0.40 x mean chord in this case, and 0.37 would be a good 
compromise: the energy loss per hour would be within a few feet of the 
optimum for any likely conditions.

When the sailplane has flaps, the calculations become a little more 
complicated, because Cmo has different values in the two conditions of 
flight. Some calculations for a 15-metre sailplane lead one to conclude 
that the effect of the flaps is to reduce the tail loads during the glide and 
hence the overall energy loss. Indeed, with the CG at 0.4 x mean chord 
and a glide speed of 60 knots, the total energy loss is quite negligible, 
since in this case the tail loads in both conditions of flight are very small. 
For this machine, the optimum CG position moves forward as the glide 
speed increases, due to the differing flap deflections at the various gliding 
speeds. Once again, the optimum CG position is about 0.4 x mean 
chord but if it were fixed at 0.37, the departure from optimum would be 
negligible.

These remarks do not apply to enormous Open Class sailplanes but, 
without doing the sums in detail, one suspects that the results would 
not be too different from those above. The important conclusion from 
the above is that there is no point in flying with an excessively aft CG 
position.

If, in the case of the Standard Class machine, the CG was movable, 
then the energy loss could be made zero in both conditions of flight. 
The time saved would then be about 7 sees per hour, or 0.02%, with a 
cruising speed of 70 knots. To shift the CG by the desired amount 
would involve moving a mass of about 18 Ib through a distance of 
about 16 feet, doubtless by pumping water ballast. The aftmost CG 
position would be at 0.5 x mean chord, when the machine would be 
slightly unstable. To restore the stability, a slightly larger tailplane would 
be required, thus increasing the profile drag. Moving the CG in flight 
appears to be a profitless occupation.
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Rough calculations for a T-tail sailplane suggest that the additional 
drag in circling flight is likely to be more, and in straight flight less, than 
that from the above calculations. The optimum CG is therefore likely to 
be further forward that suggested above. The results of C.O. Vernon 
(1992) tend to confirm these results.

References

Irving, KG., "The optimum centre of gravity position for minimum overall energy 
loss", OSTIV Publication XVI, 1981.

Jones, R.T., "Minimising induced drag", Soaring, October, 1979.

Prandtl, L. and Tietjens, O.G., Applied Hydro- and Aeromechanics, Dover 
Publications, 1934 and 1957.

Vernon, C.O., "Trim drag", Technical Soaring, January, 1992.



Chapter 14

A BRIEF NOTE ON COMPUTERS, 
FLIGHT DATA RECORDERS, GPS, ETC.

Since New Soaring Pilot was written, it has become possible to obtain 
electronic devices which will perform most of the calculations required 
in soaring flight. Many of the more complex sums, previously impossible 
to carry out in the heat of the moment, are now little more than pressing 
a few buttons. The complexity of the devices varies enormously. On the 
one hand, a relatively simple contrivance will work like a normal audio 
variometer in thermals while also giving the rate of climb averaged 
roughly over the previous turn, becoming a-best-speed-to-fly indicator 
between thermals and storing a vast number of polars probably in a 
simplified form such as Eq. (3.2), with the capability to deal with various 
weights due to the presence or abscence of water ballast and because 
the appropriate chips are very cheap, a few extras such as temperature 
and battery volts are thrown in for good measure. At the other end of 
the scale is the device with built-in Global Positioning System (GPS), 
which not only carries out most of the calculations in this book but 
records the entire flight as well. It will also provide instantaneous data 
on a vast number of parameters. The price of such a device would have 
bought quite a sophisticated sailplane not many years ago and it comes 
with an instruction manual of amazing complexity.

At this point, I will refrain from enlarging on the difficulty of 
comprehending such manuals (at any rate to the older generation) 
and simply point out that some are more user-friendly than others. 
Indeed, the requirements for such an instrument can be summarized 
as follows:
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It should be user-friendly, both in terms of the manual and the 
display;
It should deal in true airspeeds for all navigational purposes; 
It should deal in equivalent airspeeds for all other purposes; 
It should not display marginally useful data simply because it is 

simple to do so.

There is no doubt that the coming of the 'glass' cockpit represents a 
great step forward and some manufacturers are showing signs of making 
them simpler and friendlier.



Appendix 1

SOME USEFUL GENERAL REFERENCES

This book contains many references to OSTIV publications. OSTIV 
is the Organisation Scientifique et Technique Internationale de Vol a 
Voile and its address is: c/o TU-Delft, Fac. Aerospace Engin., Khuyverweg 
1, NL-2629, HS Delft, The Netherlands. With a few exceptions, copies of 
the OSTIV references can be obtained from them. Why not become an 
Individual Member?

The Congress in Rieti, Italy, was the last for which an OSTIV 
Publication containing the proceedings was published. Thereafter, the 
proceedings were reproduced in "Technical Soaring", a joint publication 
of OSTIV and the Soaring Society of America. It is published quarterly 
by The Soaring Society of America, Inc., P.O. Box E, Hobbs, New Mexico 
88241, USA.

Other general references are as follows:

1. Airworthiness.
1.1 "OSTIV Airworthiness Standards for Sailplanes", 1996.
1.2 "Joint Airworthiness Requirements: JAR 22, Sailplanes and Powered 

Sailplanes", Airworthiness Authorities Steering Committee, 1980, with 
subsequent changes. Obtainable from the Civil Aviation Authority, 
Printing and Publication Services, Greville House, 37, Gratton Road, 
Cheltenham, Glos., GL50 2BN, UK.

2. General.
2.1 Barnard, R.H. and Philpott, D.R., Aircraft Flight, Longman, 1989. 

(Concerned with powered aircraft but gives good general 
explanations.)

2.2 Brinkman, G. and Zacher, H., Die Evolution der Segelflugzeuge,
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Bernard & Graefe Verlag, Heilsbachstrasse 26, D-5300 Bonn 1, 
Germany.

2.3 Coates, A.Janes World Sailplanes and Motor Gliders, Janes Publishing 
Co., 1980.

2.4 Reichmann, H., Cross-Country Soaring, Thomson Publications, 1978.
2.5 Stinton, D., The Design of the Aeroplane, Granada, 1983. (Mainly 

concerned with the aerodynamic design of light aeroplanes but 
contains much useful information.)

2.6 Torenbeek, E., Synthesis of Subsonic Aeroplane Design, Delft 
University Press/Martinus Nijhoff, 1982. (Mainly concerned with 
medium-sized transport aircraft, but contains much useful 
information.)

2.7 Welch, A. & L. and Irving, F.G., The New Soaring Pilot, John Murray, 
1977. (Also published in the USA under the title The Complete Soaring 
Pilot's Handbook by David McKay Co. Inc., New York.)

3. Aerodynamics.
3.1 Abbott, I.H. and von Doenhoff, A.E., Theory of Wing Sections, Dover, 

New York, 1958.
3.2 Althaus, D., Stuttgarter Profilkatalog I, Institut fur Aero- und 

Gasdynamik der Universitat Stuttgart, 1972.
3.3 Anderson, J.D., Fundamentals of Aerodynamics, McGraw-Hill, 1991.
3.4 Eppler, R., Aerofoil Design and Data, Springer-Verlag, 1990.
3.5 Hoerner, S.F., Fluid Dynamic Drag, Published by the author, 1965.
3.6 Kuethe, A.M. and Chow, C-Y., Foundations of Aerodynamics, John 

Wiley, 1986.
3.7 Simons, M., Model Aircraft Aerodynamics, Model and Allied 

Publications (Argus Books Ltd.), 1978. (Relates to models, but much 
of the material is also applicable to gliders.)

4. Stability and Control.
4.1 Babister, A.W., Aircraft Dynamic Stability and Response, Pergamon, 

1980.
4.2 Etkin, B., Dynamics of Flight— Stability and Control, 2nd Ed., John 

Wiley, 1982.
4.3 Irving, F.G., An Introduction to the Longitudinal Static Stability of 

Low-Speed Aircraft, Pergamon, 1966.
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4.4 Morelli, P., "Static stability and control of sailplanes", O577V, 1976.

5. Structures.
5.1 Kensche, Ch., "Fatigue of composite materials in sailplanes and rotor 

blades", OSTIV Publication XVm, 1985.
5.2 Megson, T. H. G., A ircraft Structures for Engineering Students, Edward 

Arnold, 1977.
5.3 Roark, R.J., Formulas for Stress and Strain, McGraw-Hill, 1965.
5.4 Stender, W., "Sailplane weight estimation", OSTIV, 1969.
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Lengths, areas, volumes.
1 in = 2.54 cm, exactly
1 ft = 0.3048 m
1 statute mile = 5280 ft = 1.6093 km
1 nautical mile = 6080 ft

= 1.515 statute miles = 1.8531 km 
1 in2 = 6.4516 cm2 
1 ft2 = 0.0929 m2 
1 Imperial gallon = 1.2009 US gallon

= 4.5455 litres

Masses and forces.
1 Ib = 0.4536 kg 
llbf= 4.4482 N

Force per unit area.
1 lb/ft2 = 4.8825 kg/m2 
1 lbf/in2 = 0.0703 kp/cm2 
lbar=105 N/m2

CONVERSION 
FACTORS

1 cm = 0.3937 in
lm = 3.2808 ft
1 km = 3281 ft = 0.6214 mile

1cm2 = 0.1550 in2 
1m2 =10.7639 ft2

1 kg = 2.2046 Ib 
1 N = 0.2248 Ibf 
ldaN=1.0197kp

1 kg/m2 = 0.2048 lb/ft2 
1 kp/cm2 = 14.2248 lbf/in2 
1 millibar = 100 N/m2

Miscellaneous.
Standard gravitational acceleration = 32.1740 ft/sec'

= 9.8066 m/sec2 
1 radian = 57.29°
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THE STANDARD ATMOSPHERE

Height 

ft

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11 000
12000
13000
14000
15000
16000
17000
18000
19000
20000

Temperature 

°C

15
13.02
11.04
9.06
7.08
5.10
3.11
1.13

-0.85
-2.83
-4.81
-6.79
-8.77

-10.76
-12.74
-14.72
-16.70
-18.68
-20.66
-22.64
-24.62

Speed of

sound 
ft/sec

1117
1113
1109
1105
1101
1098
1094
1090
1086
1082
1078
1074
1070
1066
1062
1058
1054
1050
1046
1041
1037

Pressure 

lb/ft2

2116.2
2040.9
1967.7
1896.6
1827.7
1760.8
1695.9
1632.9
1571.9
1512.7
1455.3
1399.7
1345.9
1293.7
1243.2
1194.3
1146.9
1101.1
1056.8
1013.9
972.5

Density, p 

slug/ft3

0.002377
0.002308
0.002241
0.002175
0.002111
0.002048
0.001987
0.001927
0.001868
0.001811
0.001755
0.001701
0.001648
0.001596
0.001545
0.001496
0.001447
0.001401
0.001355
0.001310
0.001266

i 
(p/po) 2

1.0000
0.9854
0.9710
0.9566
0.9424
0.9283
0.9143
0.9004
0.8866
0.8729
0.8594
0.8459
0.8326
0.8193
0.8062
0.7932
0.7804
0.7676
0.7549
0.7424
0.7299

(cont'd)
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Height

ft

25000
30000
35000

36089

40000
50000
60000

Temperature

°C

-34.53
-44.44
-54.34

-56.50

-56.50
-56.5
-56.5

Speed of
sound
ft/sec

1016
995
973

968

968
968
968

Pressure

lb/ft2

785.3
628.4
498.0

472.7

381.7
242.2
149.8

Density, p

slug/ft3

0.001065
0.000889
0.000737

0.000706

0.000585
0.000362
0.000224

(p/Po) 2

0.6694
0.6116
0.5567

0.5450

0.4962
0.3902
0.3068



SYMBOLS

A Point on polar curve corresponding to minimum sink (Fig. 3-D
A Aspect ratio
A Constant in Eq. (3.2)
a Constant in Eq. (7.3)
a Speed of sound
a0 Two-dimensional lift curve slope

B Point on polar curve corresponding to best gliding angle
B Constant in Eq. (3.2)
b Span
b Constant in Eq. (7.3)
fe, Wing span (In Eq. (13.1))
b2 Tail span (In Eq. (13.1))

CD Drag coefficient
CM Induced drag coefficient
CDQ Profile drag coefficient, or minimum drag coefficient
CL Lift coefficient
CMo Pitching moment coefficient about the aerodynamic centre
Cp Pressure coefficient, p/\pV 2
c Constant in Eq. (7.3)

D Drag
AD Increment in drag
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	 Symbols 125

g Acceleration due to gravity
go Acceleration due to gravity at Z = 0

h Height

h Dimensionless CG position aft of mean aerodynamic centre
t>A Height required to cover a given distance at maximum L/D
he Energy height
He Change of energy height between .Xj and x2

k Induced drag factor

L Lift
L2 Tail lift
/ Length
/( Distance between the aerodynamic centre of tail and aero 

	dynamic centre of the rest of the glider

m Mass of sailplane

n Load factor, L/W
n An index, as in pn

ps Static pressure of the atmosphere
Pc Proportion of time spent in circling flight

q Angular velocity about Oy or the centre of curvature of the
	flight path

q Dynamic head per unit area, \pV 2
qc Dynamic head per unit area in circling flight
qg Dynamic head per unit area in gliding flight

R Radius of turn
R Thermal radius (i.e., the value of rat which VT = 0)
Re Reynolds number
r Angular velocity about Oz
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r Radius in a thermal

5 Gross wing area

T Thrust
T Time constant of variometer
T Time to travel from x^ox2
t Time
tc Climbing time
tg Gliding time

V True airspeed
Vav Average speed for a cross-country flight
Vc True rate of climb
VD Design diving speed
VDF Demonstrated diving speed
Vg Gliding speed
V{ Equivalent airspeed
Vims Equivalent airspeed for minimum rate of sink
Vio Equivalent airspeed for best L/D
Vne Never-exceed speed
K>pt Optimum gliding speed for max overall speed
Vs True rate of sink
Vsi Equivalent rate of sink
Vs/ min Eqivalent minimum rate of sink
Vs ind Indicated rate of sink
Vsio Eqivalent rate of sink at best L/D
Vw Headwind component
V^eff Effective headwind
VT Strength of thermal at radius r
VTo Strength of thermal at r = 0
Vtr Velocity along the track
Vi Speed for minimum sink at n - \
V* Speed for minimum sink at an angle of bank 0
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Vs\ Minimum sinking speed for n - 1
Vsj Minimum sinking speed at an angle of bank 0
v True airspeed (Kantrowitz's letter, Chapter 5)

W Weight of the sailplane
w Wing loading, W/S
w Upwards air velocity (Chapter 10)
ws Rate of sink of air
w* I/A

X Distance to go along the flight path
x Generalised distance along the flight path

Z Geopotential altitude

Greek Symbols

a Angle of incidence (or attack)
e Downwash angle
£ Angle between the thrust and the Ox axis
0 Angle of roll about Ox
0 Angle of bank whilst circling
T Slope of flight path
A Lagrange multiplier
A Angle between course and track
/l Viscosity
Q Angular velocity about a vertical axis
p Air density
p0 Standard sea-level air density
6 Angle between Ox and the horizontal



INDEX

Aileron 29, 50
air density 3
air mass 44, 67, 79
airspeed 6
airspeed indicator 47
altimeter 46
analytical polar 78
aspect ratio 20
axes 23

Bernoulli 4
best speed to fly 92
biplane 13
boundary layer 6
British standard thermal 65

Calculus of variations 84, 88, 91, 92
camber 9
capillary tube 43, 80
centre of gravity 17, 111
chord 113
classical analysis 68
cloud streets 60, 92
Concorde 40
computers 116
continuity 56
corrections to the vario 81
cross-country flying 75
cross-country speed 68

Demonstrated dive speed 48 
design dive speed 48 
density 6

dimensionless coefficients 4 
dolphin flying 86 
downdraught 56, 71 
down wash 12 
drag coefficient 4 
drag (total) 17 
dynamic head 4

Electric variometer 42 
energy height 93, 94, 112 
equations of motion 23 
Euler 91

Feet 3
final glide 85
finite span 11
flaps 9, 27, 82, 114
flight path indicator 80
flight path slope 23
flutter 2

Geopotential altitude 62 
Georgii 53
gliding angle, best 19 
ground effect 30

Haller, A. 53 
handicapping 56, 73 
height constraints 84 
Hirth W. 53

Imperial College 39 
incidence 4 
induced drag 11, 112 
induced drag factor 20
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Kantrowitz, A. 36 
Kasprzyk, W. 66 
kilogram 3 
kinetic energy 37 
knots 3
Kronfeld, R. 35, 53 
Kutta-Joukowski 5

Laminar boundary layer 6 
laminar separation bubble 7 
last thermal 71 
lee waves vii, 108 
Leusch, W. 53 
lift coefficient 4 
lift curve slope 14 
lift distribution 12 
lift/drag ratio 20 
Lilienthal, O. vii, 5 
Lippisch, A. 35 
load factor 87

MacCready ring 77, 83-86, 95, 109 
Mach number 7, 42 
maximum average speed 70 
maximum rate of climb 27 
mean aerodynamic chord 113 
millimetres 3 
metre/sec 3 
multiplane 13 
Munk, M. Ill

Never-exceed speed 48 
newtons 3 
Nickel, K. 67,72

Optimisations 91

Parabolic thermals 57, 59
parabolic polar 18
performance curve 19
performance in turning flight 27
Pilcher, P. vii
polar diagram 5
polar (non-parabolic) 21
potential energy 1
pounds 3
poundals 3
power law 57

pressure error 48 
pressure gradient 7 
profile drag 14

Radio sonde 63 
Raspet, A. 38, 42 
rate of climb 65 
Reynolds number 4 
Reynolds, O. 6 
riblets 8

Separation 7 
sink, minimum 19 
skin friction 6 
slug 3
Spate, W. 66 
spherical bubble 58 
Spitfire 13 
stalling speed 6 
Standard Atmosphere 46 
Swarz, L. 66

Taper 14
thermal 53, 54, 68
thermistor 43
thrust vector 23
time constant 43
total energy 36, 73
transition 7
turbulence 59
turbulent boundary layer 7
twist 12

Vampyr 7 
variometers 35 
venturi 37
vertical speed 35, 54 
vortex ring thermal 54 
vorticity 11, 58

Washout 13, 14
Wasserkuppe 53
water ballast 21, 88
waves 60
Wein 53
Welch, Ann viii
wind 61, 82, 101-103, 107
wind components 104-106
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winglet 13 
wing loading 21 
wing span 20 
wing section 8 
Wright Brothers vii, 53

Zig-zag tape 8
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This book Is concerned with the sport of soaring, mainly with the 
mathematical basis of sailplane design and operation. It does not tell 
the beginner how to fly, but it will give an experienced pilot some 
background, with historical notes showing how ideas have evolved 
and could develop in the future. Some of the material is taken from 
OSTIV (Organisation Scientifique et Technique Internationale du Vol 
a Voile) publications and from Technical Soaring, neither of which is 
readily available to the general public, including papers by the author 
and others. Extensive references are provided in each chapter.
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